|
YODA - Yet more Objects for Data Analysis 2.1.0
|
Go to the documentation of this file.
6#ifndef YODA_BinnedDbn_h
7#define YODA_BinnedDbn_h
50 template < size_t DbnN, typename... AxisT>
54 template < size_t DbnN, typename... AxisT>
61 using Ptr = std::shared_ptr<HistoT>;
71 using AnalysisObject::operator =;
101 template < typename... AxisTypes>
104 template < typename... AxisTypes>
119 template < size_t DbnN, typename... AxisT>
129 using AnalysisObject::operator =;
146 const std::string& path = "", const std::string& title = "")
147 : BaseT( Axis<AxisT>(std::move(binsEdges))...),
156 const std::string& path = "", const std::string& title = "")
166 const std::string& path = "", const std::string& title = "")
167 : BaseT( Axis<AxisT>(std::move(binsEdges))...),
175 DbnStorage( const std::vector<size_t>& nBins, const std::vector<std::pair<EdgeT, EdgeT>>& limitsLowUp,
176 const std::string& path = "", const std::string& title = "")
177 : BaseT( _mkBinning(nBins, limitsLowUp, std::make_index_sequence<sizeof...(AxisT)>{}) ),
199 : BaseT(_mkBinning(s, std::make_index_sequence<sizeof...(AxisT)>{})),
234 virtual int fill( FillType&& coords, const double weight = 1.0, const double fraction = 1.0) {
235 return BaseT::fill(std::move(coords), std::make_index_sequence< sizeof...(AxisT)>{}, weight, fraction);
239 void scaleW( const double scalefactor) noexcept {
240 setAnnotation( "ScaledBy", annotation<double>( "ScaledBy", 1.0) * scalefactor);
241 for ( auto& bin : BaseT::_bins) {
242 bin.scaleW(scalefactor);
247 void scale( const size_t i, const double scalefactor) noexcept {
248 setAnnotation( "ScaledBy", annotation<double>( "ScaledBy", 1.0) * scalefactor);
249 for ( auto& bin : BaseT::_bins) {
250 bin.scale(i, scalefactor);
260 void normalize( const double normto=1.0, const bool includeOverflows= true) {
261 const double oldintegral = integral(includeOverflows);
262 if (oldintegral == 0) throw WeightError( "Attempted to normalize a histogram with null area");
263 scaleW(normto / oldintegral);
275 template < size_t axisN>
276 void rebinBy( unsigned int n, size_t begin=1, size_t end=UINT_MAX) {
277 if (n < 1) throw UserError( "Rebinning requested in groups of 0!");
278 if (!begin) throw UserError( "Visible bins start with index 1!");
280 for ( size_t m = begin; m < end; ++m) {
284 BaseT::template mergeBins<axisN>({m, myend});
291 template < size_t axisN>
292 void rebin( unsigned int n, size_t begin=1, size_t end=UINT_MAX) {
293 rebinBy<axisN>(n, begin, end);
297 template < size_t axisN>
298 void rebinTo( const std::vector< typename BinningT::template getAxisT<axisN>::EdgeT>& newedges) {
299 if (newedges.size() < 2)
300 throw UserError( "Requested rebinning to an edge list which defines no bins");
301 using thisAxisT = typename BinningT::template getAxisT<axisN>;
302 using thisEdgeT = typename thisAxisT::EdgeT;
304 thisAxisT& oldAxis = BaseT::_binning.template axis<axisN>();
305 const thisAxisT newAxis(newedges);
306 const std::vector<thisEdgeT> eshared = oldAxis.sharedEdges(newAxis);
307 if (eshared.size() != newAxis.edges().size())
308 throw BinningError( "Requested rebinning to incompatible edges");
310 for ( size_t begin = 0; begin < eshared.size() - 1; ++begin) {
313 size_t end = oldAxis.index(eshared[begin+1]) - 1;
316 if (begin == newAxis.numBins( true)-1) end = oldAxis.numBins( true)-1;
318 if (end > begin) BaseT::template mergeBins<axisN>({begin, end});
319 if (eshared.size() == oldAxis.edges().size()) break;
324 template < size_t axisN>
325 void rebin( const std::vector< typename BinningT::template getAxisT<axisN>::EdgeT>& newedges) {
326 rebinTo<axisN>(newedges);
356 throw BinningError( "Arithmetic operation requires compatible binning!");
367 throw BinningError( "Arithmetic operation requires compatible binning!");
383 throw BinningError( "Arithmetic operation requires compatible binning!");
394 throw BinningError( "Arithmetic operation requires compatible binning!");
422 size_t dim() const noexcept { return sizeof...(AxisT) + 1; }
425 std::string _config() const noexcept { return mkAxisConfig<AxisT...>(); }
428 template < size_t I, typename E = typename BinningT:: template getEdgeT<I>>
429 std::vector<E> edges( const bool includeOverflows = false) const noexcept {
430 return BaseT::_binning.template edges<I>(includeOverflows);
439 template < size_t I, typename E = typename BinningT:: template getEdgeT<I>>
440 std::enable_if_t<std::is_floating_point<E>::value, std::vector<E>>
441 widths( const bool includeOverflows = false) const noexcept {
442 return BaseT::_binning.template widths<I>(includeOverflows);
448 template < size_t I, typename E = typename BinningT:: template getEdgeT<I>>
449 std::enable_if_t<std::is_floating_point<E>::value, E> min() const noexcept {
450 return BaseT::_binning.template min<I>();
456 template < size_t I, typename E = typename BinningT:: template getEdgeT<I>>
457 std::enable_if_t<std::is_floating_point<E>::value, E> max() const noexcept {
458 return BaseT::_binning.template max<I>();
468 double integral( const bool includeOverflows= true) const noexcept {
469 return sumW(includeOverflows);
474 return sqrt( sumW2(includeOverflows));
485 assert(binIndex2 >= binIndex1);
489 for ( size_t idx = binIndex1; idx <= binIndex2; ++idx) {
499 assert(binIndex2 >= binIndex1);
503 for ( size_t idx = binIndex1; idx <= binIndex2; ++idx) {
511 double numEntries( const bool includeOverflows= true) const noexcept {
513 for ( const auto& b : BaseT::bins(includeOverflows))
521 for ( const auto& b : BaseT::bins(includeOverflows))
522 n += b.effNumEntries();
527 double sumW( const bool includeOverflows= true) const noexcept {
529 for ( const auto& b : BaseT::bins(includeOverflows))
535 double sumW2( const bool includeOverflows= true) const noexcept {
537 for ( const auto& b : BaseT::bins(includeOverflows))
543 double sumWA( const size_t dim, const bool includeOverflows= true) const {
544 if ( dim >= DbnN) throw RangeError( "Invalid axis int, must be in range 0..dim-1");
546 for ( const auto& b : BaseT::bins(includeOverflows))
547 sumwa += b.sumW( dim+1);
552 double sumWA2( const size_t dim, const bool includeOverflows= true) const {
553 if ( dim >= DbnN) throw RangeError( "Invalid axis int, must be in range 0..dim-1");
555 for ( const auto& b : BaseT::bins(includeOverflows))
556 sumwa2 += b.sumW2( dim+1);
561 template< size_t dim = DbnN, typename = std::enable_if_t<(dim >= 2)>>
562 double crossTerm( const size_t A1, const size_t A2, const bool includeOverflows= true) const {
563 if (A1 >= DbnN || A2 >= DbnN) throw RangeError( "Invalid axis int, must be in range 0..dim-1");
564 if (A1 >= A2) throw RangeError( "Indices need to be different for cross term");
566 for ( const auto& b : BaseT::bins(includeOverflows))
567 sumw += b.crossTerm(A1, A2);
572 double mean( size_t axisN, const bool includeOverflows= true) const noexcept {
574 for ( const auto& b : BaseT::bins(includeOverflows))
576 return dbn. mean(axisN+1);
580 double variance( size_t axisN, const bool includeOverflows= true) const noexcept {
582 for ( const auto& b : BaseT::bins(includeOverflows))
588 double stdDev( size_t axisN, const bool includeOverflows= true) const noexcept {
589 return std::sqrt( variance(axisN, includeOverflows));
593 double stdErr( size_t axisN, const bool includeOverflows= true) const noexcept {
595 for ( const auto& b : BaseT::bins(includeOverflows))
597 return dbn. stdErr(axisN+1);
601 double rms( size_t axisN, const bool includeOverflows= true) const noexcept {
603 for ( const auto& b : BaseT::bins(includeOverflows))
605 return dbn. RMS(axisN+1);
608 double dVol( const bool includeOverflows= true) const noexcept {
610 for ( const auto& b : BaseT::bins(includeOverflows))
616 double density( const bool includeOverflows= true) const noexcept {
617 const double vol = dVol(includeOverflows);
618 if (vol) return integral(includeOverflows) / vol;
619 return std::numeric_limits<double>::quiet_NaN();
624 const double vol = dVol(includeOverflows);
626 return std::numeric_limits<double>::quiet_NaN();
630 double densitySum( const bool includeOverflows= true) const noexcept {
632 for ( const auto& b : BaseT::bins(includeOverflows))
633 rho += b.sumW() / b.dVol();
638 double maxDensity( const bool includeOverflows= true) const noexcept {
639 std::vector<double> vals;
641 vals.emplace_back(b.sumW() / b.dVol());
642 return *max_element(vals.begin(), vals.end());
653 template< size_t... Is>
654 void _renderYODA_aux(std::ostream& os, const int width, std::index_sequence<Is...>) const noexcept {
659 if (DbnN > 1) { os << "("; }
660 (( os << std::string(Is? ", " : "") << mean(Is, true)), ...);
661 if (DbnN > 1) { os << ")"; }
662 os << "\n# Integral: " << integral( true) << "\n";
666 BaseT::_binning._renderYODA(os);
669 os << std::setw(width) << std::left << "# sumW" << "\t";
670 os << std::setw(width) << std::left << "sumW2" << "\t";
671 (( os << std::setw(width) << std::left << ( "sumW(A" + std::to_string(Is+1) + ")") << "\t"
672 << std::setw(width) << std::left << ( "sumW2(A" + std::to_string(Is+1) + ")") << "\t"), ...);
673 if constexpr (DbnN >= 2) {
674 for ( size_t i = 0; i < (DbnN-1); ++i) {
675 for ( size_t j = i+1; j < DbnN; ++j) {
676 const std::string scross = "sumW(A" + std::to_string(i+1) + ",A" + std::to_string(j+1) + ")";
677 os << std::setw(width) << std::left << scross << "\t";
681 os << "numEntries\n";
683 for ( const auto& b : BaseT:: bins(true, true)) {
684 os << std::setw(width) << std::left << b.sumW() << "\t";
685 os << std::setw(width) << std::left << b.sumW2() << "\t";
686 ((os << std::setw(width) << std::left << b.sumW( Is+1) << "\t"
687 << std::setw(width) << std::left << b.sumW2(Is+1) << "\t"), ...);
688 if constexpr (DbnN >= 2) {
689 for ( size_t i = 0; i < (DbnN-1); ++i) {
690 for ( size_t j = i+1; j < DbnN; ++j) {
691 os << std::setw(width) << std::left << b.crossTerm(i,j) << "\t";
695 os << std::setw(width) << std::left << b.numEntries() << "\n";
702 void _renderYODA(std::ostream& os, const int width = 13) const noexcept {
703 _renderYODA_aux(os, width, std::make_index_sequence<DbnN>{});
707 void _renderFLAT(std::ostream& os, const int width = 13) const noexcept {
708 const ScatterND< sizeof...(AxisT)+1> tmp = mkScatter();
709 tmp._renderYODA(os, width);
714 void _extractEdges(std::map<std::string, EdgeHandlerBasePtr>& edges,
715 const std::vector<std::string>&) const noexcept {
717 using lenT = EdgeHandler<size_t>;
718 using lenPtr = EdgeHandlerPtr<size_t>;
719 const std::string lengthID( "sizeinfo");
720 lenPtr nedges = std::static_pointer_cast<lenT>( edges.find(lengthID)->second);
722 auto extractEdges = [& edges, & binning = BaseT::_binning, &nedges]( auto I) {
724 using thisEdgeT = typename BinningT::template getEdgeT<I>;
725 using thisHandlerT = EdgeHandler<thisEdgeT>;
726 using thisHandlerPtr = EdgeHandlerPtr<thisEdgeT>;
729 std::vector<thisEdgeT> tmp = binning.template edges<I>();
730 nedges->extend({ tmp.size() });
732 auto itr = edges.find(edgeID);
733 if (itr != edges.cend()) {
734 thisHandlerPtr edgeset = std::static_pointer_cast<thisHandlerT>(itr->second);
735 edgeset->extend(std::move(tmp));
738 edges[edgeID] = std::make_shared<thisHandlerT>(std::move(tmp));
743 std::vector<size_t> masks = BaseT::_binning.maskedBins();
744 nedges->extend({ masks.size() });
745 nedges->extend(std::move(masks));
760 std::vector<double> rtn;
763 for ( size_t i = 0; i < nBins; ++i) {
764 std::vector<double> bdata = BaseT::bin(i)._serializeContent();
765 rtn.insert(std::end(rtn),
766 std::make_move_iterator(std::begin(bdata)),
767 std::make_move_iterator(std::end(bdata)));
776 if (data.size() != nBins * dbnSize)
777 throw UserError( "Length of serialized data should be "
778 + std::to_string(nBins * dbnSize)+ "!");
780 const auto itr = data.cbegin();
781 for ( size_t i = 0; i < nBins; ++i) {
782 auto first = itr + i*dbnSize;
783 auto last = first + dbnSize;
784 BaseT::bin(i)._deserializeContent(std::vector<double>{first, last});
801 const std::string& source = "",
802 [[maybe_unused]] const bool divbyvol = true,
803 const double overflowsWidth = -1.0) const {
808 if (a != "Type") rtn.setAnnotation(a, annotation(a));
810 rtn.setAnnotation( "Path", path);
815 const double frac = nanc / (nanc + numEntries());
817 rtn.setAnnotation( "NanFraction", frac);
818 if (wtot) rtn.setAnnotation( "WeightedNanFraction", nanw/wtot);
822 if (overflowsWidth <= 0. && !b.isVisible()) continue;
823 if constexpr(DbnN > sizeof...(AxisT)) {
824 rtn.bin(b.index()).setVal(b.mean(DbnN));
825 if (b.numEntries()) {
826 rtn.bin(b.index()).setErr(b.stdErr(DbnN), source);
830 const double scale = divbyvol? (b.isVisible()? b.dVol() : overflowsWidth) : 1.0;
831 rtn.bin(b.index()).setVal(b.sumW() / scale);
832 if (b.numEntries()) {
833 rtn.bin(b.index()).setErr(b.errW() / scale, source);
848 template< size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT)) >>
850 const bool divbyvol = true, const bool includeOverflows = false,
851 const double overflowsWidth = -1.0) {
854 return est.template mkEstimates<axisN>( path, includeOverflows);
863 const bool usefocus = false,
864 const bool includeOverflows = false,
865 const bool includeMaskedBins = false,
866 const double overflowsWidth = -1.0) const {
868 ScatterND< sizeof...(AxisT)+1> rtn = est.mkScatter( path, "", includeOverflows, includeMaskedBins);
871 for ( const auto& b : BaseT::bins(includeOverflows, includeMaskedBins)) {
872 auto shiftIfContinuous = [&rtn, &b, &idx]( auto I) {
873 using isContinuous = typename BinningT::template is_CAxis<I>;
874 if constexpr (isContinuous::value) {
875 const double oldMax = rtn. point(idx).max(I);
876 const double oldMin = rtn.point(idx).min(I);
877 const double newVal = b.mean(I+1);
878 rtn.point(idx).set(I, newVal, newVal - oldMin, oldMax - newVal);
881 MetaUtils::staticFor<BinningT::Dimension::value>(shiftIfContinuous);
892 template< size_t N = DbnN, typename = std::enable_if_t< (N == sizeof...(AxisT)+1) >>
898 if (a != "Type") rtn.setAnnotation(a, annotation(a));
900 rtn.setAnnotation( "Path", path);
903 rtn.bin(b.index()) += b.template reduce<N-1>();
920 template< size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT)) >>
923 auto rtn = BaseT::template _mkBinnedT<BinnedProfile>(BaseT::_binning. template _getAxesExcept<axisN>());
926 if (a != "Type") rtn.setAnnotation(a, annotation(a));
928 rtn.setAnnotation( "Path", path);
930 auto collapseStorageBins =
931 [&oldBinning = BaseT::_binning, &oldBins = BaseT::_bins, &rtn]( auto I, auto dbnRed) {
933 auto collapse = [&oldBins, &rtn]( const auto& binsIndicesToMerge, auto axis) {
934 assert(rtn.numBins( true) == binsIndicesToMerge.size());
938 for ( size_t i = 0; i < rtn.numBins( true); ++i) {
939 auto& pivotBin = rtn.bin(i);
940 auto& binToAppend = oldBins[binsIndicesToMerge[i]];
941 pivotBin += binToAppend.template reduce<axis>();
947 ssize_t nBinRowsToBeMerged = oldBinning.numBinsAt(I);
948 while (nBinRowsToBeMerged--) {
951 collapse(oldBinning.sliceIndices(I, nBinRowsToBeMerged), dbnRed);
957 auto dbnRed = std::integral_constant<size_t, ( sizeof...(AxisT) == DbnN)? DbnN : axisN>();
958 (void)collapseStorageBins(std::integral_constant<std::size_t, axisN>(), dbnRed);
974 template< size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT)) >>
977 if constexpr (DbnN != sizeof...(AxisT)) {
979 return mkHisto().template mkMarginalHisto<axisN>( path);
984 auto rtn = BaseT::template _mkBinnedT<BinnedHisto>(BaseT::_binning. template _getAxesExcept<axisN>());
987 if (a != "Type") rtn.setAnnotation(a, annotation(a));
989 rtn.setAnnotation( "Path", path);
991 auto collapseStorageBins =
992 [&oldBinning = BaseT::_binning, &oldBins = BaseT::_bins, &rtn]( auto I, auto dbnRed) {
994 auto collapse = [&oldBins, &rtn]( const auto& binsIndicesToMerge, auto axis) {
995 assert(rtn.numBins( true) == binsIndicesToMerge.size());
999 for ( size_t i = 0; i < rtn.numBins( true); ++i) {
1000 auto& pivotBin = rtn.bin(i);
1001 auto& binToAppend = oldBins[binsIndicesToMerge[i]];
1002 pivotBin += binToAppend.template reduce<axis>();
1008 ssize_t nBinRowsToBeMerged = oldBinning.numBinsAt(I);
1009 while (nBinRowsToBeMerged--) {
1012 collapse(oldBinning.sliceIndices(I, nBinRowsToBeMerged), dbnRed);
1016 auto dbnRed = std::integral_constant<size_t, axisN>();
1017 (void)collapseStorageBins(std::integral_constant<std::size_t, axisN>(), dbnRed);
1028 template< size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT) &&
1029 sizeof...(AxisT)>=2 &&
1030 DbnN > sizeof...(AxisT)) >>
1031 auto mkProfiles( const std::string& path= "", const bool includeOverflows= false) const {
1034 auto how2add = []( auto& pivot, const BinType& toCopy) { pivot = toCopy.template reduce<axisN>(); };
1035 auto rtn = BaseT::template mkBinnedSlices<axisN, BinnedProfile>(how2add, includeOverflows);
1037 if (a == "Type") continue;
1038 for ( size_t i = 0; i < rtn.size(); ++i) {
1042 for ( size_t i = 0; i < rtn.size(); ++i) {
1043 rtn[i].setAnnotation( "Path", path);
1053 template< size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT) && sizeof...(AxisT)>=2) >>
1054 auto mkHistos( const std::string& path= "", const bool includeOverflows= false) const {
1056 if constexpr (DbnN != sizeof...(AxisT)) {
1058 return mkHisto().template mkHistos<axisN>( path, includeOverflows);
1064 auto how2add = []( auto& pivot, const BinType& toCopy) { pivot = toCopy.template reduce<axisN>(); };
1065 auto rtn = BaseT::template mkBinnedSlices<axisN,BinnedHisto>(how2add, includeOverflows);
1067 if (a == "Type") continue;
1068 for ( size_t i = 0; i < rtn.size(); ++i) {
1072 for ( size_t i = 0; i < rtn.size(); ++i) {
1073 rtn[i].setAnnotation( "Path", path);
1086 const std::string& source = "",
1087 const bool includeOverflows = true,
1088 const bool divbyvol = true,
1089 const double overflowsWidth = -1.0) {
1093 for ( const auto& b : BaseT::bins(includeOverflows)) {
1096 scale = (overflowsWidth > 0. && !b.isVisible())? overflowsWidth : b.dVol();
1098 const double effN = b.effNumEntries() / scale;
1099 const double err = effN * b.relErrW() / scale;
1100 rtn.bin(b.index()).set(effN, {-err, err}, source);
1109 const std::string& source = "") const noexcept {
1119 template< size_t... Is>
1120 BinningT _mkBinning( const std::vector<size_t>& nBins,
1121 const std::vector<std::pair<double, double>>& limitsLowUp,
1122 std::index_sequence<Is...>) const {
1123 return BinningT({((void)Is, Axis<AxisT>(nBins[Is], limitsLowUp[Is].first, limitsLowUp[Is].second))...});
1127 template< size_t... Is>
1128 BinningT _mkBinning( const ScatterND< sizeof...(AxisT)+1>& s, std::index_sequence<Is...>) const {
1129 return BinningT(Axis<AxisT>(s.edges(Is))...);
1140 template< size_t DbnN, typename... AxisT>
1141 inline BinnedDbn<DbnN, AxisT...>
1143 first += std::move(second);
1147 template < size_t DbnN, typename... AxisT>
1148 inline BinnedDbn<DbnN, AxisT...>
1156 template < size_t DbnN, typename... AxisT>
1157 inline BinnedDbn<DbnN, AxisT...>
1159 first -= std::move(second);
1163 template < size_t DbnN, typename... AxisT>
1164 inline BinnedDbn<DbnN, AxisT...>
1172 template < size_t DbnN, typename... AxisT>
1173 inline BinnedEstimate<AxisT...>
1176 if (numer != denom) {
1177 throw BinningError( "Arithmetic operation requires compatible binning!");
1181 if (numer. path() == denom. path()) rtn.setPath(numer. path());
1182 if (rtn.hasAnnotation( "ScaledBy")) rtn.rmAnnotation( "ScaledBy");
1184 for ( const auto& b_num : numer. bins( true, true)) {
1185 const size_t idx = b_num.index();
1186 const auto& b_den = denom. bin(idx);
1188 if ( isZero(b_den.effNumEntries())) {
1189 v = std::numeric_limits<double>::quiet_NaN();
1190 e = std::numeric_limits<double>::quiet_NaN();
1193 if constexpr(DbnN > sizeof...(AxisT)) {
1194 v = b_num.mean(DbnN) / b_den.mean(DbnN);
1195 const double e_num = isZero(b_num.effNumEntries())? 0 : b_num.relStdErr(DbnN);
1196 const double e_den = isZero(b_den.effNumEntries())? 0 : b_den.relStdErr(DbnN);
1197 e = fabs(v) * sqrt( sqr(e_num) + sqr(e_den));
1200 v = b_num.sumW() / b_den.sumW();
1201 const double e_num = isZero(b_num.effNumEntries())? 0 : b_num.relErrW();
1202 const double e_den = isZero(b_den.effNumEntries())? 0 : b_den.relErrW();
1203 e = fabs(v) * sqrt( sqr(e_num) + sqr(e_den));
1206 rtn.bin(idx).set(v, {-e, e});
1213 template < size_t DbnN, typename... AxisT>
1214 inline BinnedEstimate<AxisT...>
1216 return divide(numer, denom);
1219 template < size_t DbnN, typename... AxisT>
1220 inline BinnedEstimate<AxisT...>
1222 return divide(numer, std::move(denom));
1225 template < size_t DbnN, typename... AxisT>
1226 inline BinnedEstimate<AxisT...>
1228 return divide(std::move(numer), denom);
1231 template < size_t DbnN, typename... AxisT>
1232 inline BinnedEstimate<AxisT...>
1234 return divide(std::move(numer), std::move(denom));
1242 template < size_t DbnN, typename... AxisT>
1243 inline BinnedEstimate<AxisT...>
1246 if (accepted != total) {
1247 throw BinningError( "Arithmetic operation requires compatible binning!");
1252 for ( const auto& b_acc : accepted. bins( true, true)) {
1253 const auto& b_tot = total. bin(b_acc.index());
1254 auto& b_rtn = rtn.bin(b_acc.index());
1258 if (b_acc.numEntries() > b_tot.numEntries())
1259 throw UserError( "Attempt to calculate an efficiency when the numerator is not a subset of the denominator: "
1260 + Utils::toStr(b_acc.numEntries()) + " entries / " + Utils::toStr(b_tot.numEntries()) + " entries");
1263 double eff = std::numeric_limits<double>::quiet_NaN();
1264 double err = std::numeric_limits<double>::quiet_NaN();
1265 if (! isZero(b_tot.effNumEntries())) {
1267 err = sqrt(fabs( add((1.0-2.0*eff)*b_acc.sumW2(), sqr(eff)*b_tot.sumW2()) / sqr(b_tot.sumW()) ));
1269 b_rtn.setErr({-err, err});
1276 template < size_t DbnN, typename... AxisT>
1277 inline BinnedEstimate<AxisT...>
1279 return (a-b) / (a+b);
1291 template < size_t DbnN, typename... AxisT>
1292 inline BinnedEstimate<AxisT...>
1297 double sumW = 0.0, sumW2 = 0.0;
1298 for ( const auto& b : histo. bins(includeOverflows)) {
1301 const double e = sqrt(sumW2);
1302 rtn.bin(b.index()).set(sumW, {-e, e});
1320 template < size_t DbnN, typename... AxisT>
1321 inline BinnedEstimate<AxisT...>
1325 const double integral = histo. integral(includeOverflows);
1331 if (!integral) return rtn;
1333 const double integral_err = histo. integralError(includeOverflows);
1334 for ( const auto& b : rtn.bins(includeOverflows)) {
1335 const double eff = b.val() / integral;
1336 const double err = sqrt(std::abs( ((1-2*eff)* sqr(b.relTotalErrAvg()) + sqr(eff)* sqr(integral_err)) / sqr(integral) ));
1337 b.set(eff, {-err,err});
1345 template < size_t DbnN, typename... AxisT>
1346 inline BinnedEstimate<AxisT...>
1351 template < size_t DbnN, typename... AxisT>
1352 inline BinnedEstimate<AxisT...>
1354 return add(dbn, est);
1357 template < size_t DbnN, typename... AxisT>
1358 inline BinnedEstimate<AxisT...>
1360 return add(std::move(dbn), est);
1363 template < size_t DbnN, typename... AxisT>
1364 inline BinnedEstimate<AxisT...>
1366 return add(dbn, std::move(est));
1369 template < size_t DbnN, typename... AxisT>
1370 inline BinnedEstimate<AxisT...>
1372 return add(std::move(dbn), std::move(est));
1377 template < size_t DbnN, typename... AxisT>
1378 inline BinnedEstimate<AxisT...>
1383 template < size_t DbnN, typename... AxisT>
1384 inline BinnedEstimate<AxisT...>
1389 template < size_t DbnN, typename... AxisT>
1390 inline BinnedEstimate<AxisT...>
1392 return subtract(std::move(dbn), est);
1395 template < size_t DbnN, typename... AxisT>
1396 inline BinnedEstimate<AxisT...>
1398 return subtract(dbn, std::move(est));
1401 template < size_t DbnN, typename... AxisT>
1402 inline BinnedEstimate<AxisT...>
1404 return subtract(std::move(dbn), std::move(est));
1409 template < size_t DbnN, typename... AxisT>
1410 inline BinnedEstimate<AxisT...>
1415 template < size_t DbnN, typename... AxisT>
1416 inline BinnedEstimate<AxisT...>
1421 template < size_t DbnN, typename... AxisT>
1422 inline BinnedEstimate<AxisT...>
1424 return divide(std::move(dbn), est);
1427 template < size_t DbnN, typename... AxisT>
1428 inline BinnedEstimate<AxisT...>
1430 return divide(dbn, std::move(est));
1433 template < size_t DbnN, typename... AxisT>
1434 inline BinnedEstimate<AxisT...>
1436 return divide(std::move(dbn), std::move(est));
1448 template< size_t DbnN, typename... AxisT, typename... Args,
1449 typename = std::enable_if_t<(DbnN == sizeof...(AxisT)+1 &&
1450 (std::is_same_v<BinnedDbn<DbnN, AxisT...>, Args> && ...))>>
1452 const std::string& path = "") {
1455 if ( !((p1 == others) && ...) )
1456 throw BinningError( "Requested zipping of profiles with incompatible binning!");
1460 constexpr size_t N = sizeof...(Args)+1;
1463 for ( const auto& b1 : p1. bins()) {
AnalysisObject is the base class for histograms and scatters.
virtual AnalysisObject & operator=(const AnalysisObject &ao) noexcept Default copy assignment operator.
void setAnnotation(const std::string &name, const T &value) Add or set an annotation by name (templated for remaining types)
const std::string title() const Get the AO title.
std::vector< std::string > annotations() const
const std::string path() const Get the AO path.
void rmAnnotation(const std::string &name) Delete an annotation by name.
const std::string & annotation(const std::string &name) const Get an annotation by name (as a string)
virtual AnalysisObject * newclone() const =0 Make a copy on the heap, via 'new'.
bool hasAnnotation(const std::string &name) const Check if an annotation is defined.
AnalysisObject() Default constructor.
Discrete axis with edges of non-floating-point-type.
User-facing BinnedDbn class in arbitrary dimension.
typename BaseT::BinT BinType
BinnedDbn< DbnN, AxisT... > HistoT
HistoT * newclone() const noexcept Make a copy on the heap.
typename BaseT::FillType FillType
BinnedDbn(const BaseT &other) Copy constructor (needed for clone functions).
HistoT clone() const noexcept Make a copy on the stack.
BinnedDbn(const HistoT &)=default
std::shared_ptr< HistoT > Ptr
BinnedDbn(HistoT &&)=default
BinnedDbn(HistoT &&other, const std::string &path)
BinnedDbn(const HistoT &other, const std::string &path)
BinnedDbn(BaseT &&other) Move constructor.
BinnedDbn & operator=(const HistoT &)=default
BinT & bin(size_t idx) noexcept Returns reference to the bin at idx.
void maskBins(const std::vector< size_t > &indicesToMask, const bool status=true) noexcept Mask a range of bins.
size_t numBinsAt(const size_t axisN, const bool includeOverflows=false) const noexcept Number of bins in the BinnedStorage.
size_t numBins(const bool includeOverflows=false, const bool includeMaskedBins=false) const noexcept Number of bins in the BinnedStorage.
bool isMasked(const size_t binIndex) const noexcept
BinsVecWrapper< BinsVecT > bins(const bool includeOverflows=false, const bool includeMaskedBins=false) noexcept Returns bins vector wrapper, which skips masked elements when iterated over.
const BinningT & binning() const noexcept Returns dimension underlying binning object reference.
std::vector< size_t > maskedBins() const noexcept
Error for general binning problems.
double RMS(const size_t i) const Weighted RMS, , of distribution.
double mean(const size_t i) const Weighted mean, , of distribution.
double variance(const size_t i) const Weighted variance, , of distribution.
double stdErr(const size_t i) const Weighted standard error on the mean, , of distribution.
All histograms can be instantiated through this alias.
AnalysisObject * mkInert(const std::string &path="", const std::string &source="") const noexcept Return an inert version of the analysis object (e.g. scatter, estimate)
double integralRange(const size_t binIndex1, size_t binIndex2) const Calculates the integrated volume of the histogram between global bins binindex1 and binIndex2.
double rms(size_t axisN, const bool includeOverflows=true) const noexcept Calculates the RMS at axis.
std::enable_if_t< std::is_floating_point< E >::value, E > min() const noexcept Get the lowest non-overflow edge of the axis.
void deserializeContent(const std::vector< double > &data) Content deserialisation for MPI reduce operations.
DbnStorage(Axis< AxisT > &&... axes, const std::string &path="", const std::string &title="") Constructor given a sequence of rvalue axes.
double sumWA(const size_t dim, const bool includeOverflows=true) const Calculates first moment along axis dim in histo.
void reset() noexcept Reset the histogram.
double sumWA2(const size_t dim, const bool includeOverflows=true) const Calculates second moment along axis dim in histo.
DbnStorage(std::initializer_list< AxisT > &&... binsEdges, const std::string &path="", const std::string &title="") Constructor giving explicit bin edges as initializer list.
std::enable_if_t< std::is_floating_point< E >::value, std::vector< E > > widths(const bool includeOverflows=false) const noexcept Templated version to get bin widths of axis N by reference.
void normalize(const double normto=1.0, const bool includeOverflows=true) Normalize the (visible) histo "volume" to the normto value.
double stdErr(size_t axisN, const bool includeOverflows=true) const noexcept Calculates the standard error at axis.
double densitySum(const bool includeOverflows=true) const noexcept Returns the sum of the bin densities.
double stdDev(size_t axisN, const bool includeOverflows=true) const noexcept Calculates the standard deviation at axis.
DbnStorage(std::vector< AxisT > &&... binsEdges, const std::string &path="", const std::string &title="") Constructor giving explicit bin edges as rvalue reference.
double numEntries(const bool includeOverflows=true) const noexcept Get the number of fills (fractional fills are possible).
double density(const bool includeOverflows=true) const noexcept Get the total density of the histogram.
auto mkMarginalProfile(const std::string &path="") const Produce a BinnedProfile from a DbnStorage.
std::enable_if_t< std::is_floating_point< E >::value, E > max() const noexcept Get the highest non-overflow edge of the axis.
DbnStorage & operator+=(const DbnStorage &dbn) Add two DbnStorages.
DbnStorage * newclone() const noexcept Make a copy on the heap.
double effNumEntries(const bool includeOverflows=true) const noexcept Get the effective number of fills.
double integralError(const bool includeOverflows=true) const noexcept Get the total volume error of the histogram.
typename BaseT::BinningT BinningT
DbnStorage & operator-=(const DbnStorage &dbn) Subtract one DbnStorages from another one.
FillableStorage< DbnN, Dbn< DbnN >, AxisT... > BaseT
auto mkHistos(const std::string &path="", const bool includeOverflows=false) const Split into vector of BinnedHisto along axis axisN.
auto mkProfiles(const std::string &path="", const bool includeOverflows=false) const Split into vector of BinnedProfile along axis axisN.
double densityError(const bool includeOverflows=true) const noexcept Get the total density error of the histogram.
double crossTerm(const size_t A1, const size_t A2, const bool includeOverflows=true) const Calculates cross-term along axes A1 and A2 in histo.
auto mkMarginalHisto(const std::string &path="") const Produce a BinnedHisto from a DbnStorage.
DbnStorage(const DbnStorage &other, const std::string &path="") Copy constructor.
double dVol(const bool includeOverflows=true) const noexcept
size_t fillDim() const noexcept Fill-dimension of this data object.
void rebin(unsigned int n, size_t begin=1, size_t end=UINT_MAX) Overloaded alias for rebinBy.
DbnStorage(const Axis< AxisT > &... axes, const std::string &path="", const std::string &title="") Constructor given a sequence of axes.
size_t lengthContent(bool=false) const noexcept Length of serialized content vector for MPI reduce operations.
double sumW(const bool includeOverflows=true) const noexcept Calculates sum of weights in histo.
double sumW2(const bool includeOverflows=true) const noexcept Calculates sum of squared weights in histo.
DbnStorage(const std::vector< size_t > &nBins, const std::vector< std::pair< EdgeT, EdgeT > > &limitsLowUp, const std::string &path="", const std::string &title="") Constructor giving range and number of bins.
BinnedEstimate< AxisT... > mkEstimate(const std::string &path="", const std::string &source="", const bool divbyvol=true, const double overflowsWidth=-1.0) const Produce a BinnedEstimate from a DbnStorage.
double variance(size_t axisN, const bool includeOverflows=true) const noexcept Calculates the variance at axis.
void scaleW(const double scalefactor) noexcept Rescale as if all fill weights had been different by factor scalefactor.
DbnStorage(BinningT &&binning, const std::string &path="", const std::string &title="") Constructor given an rvalue BinningT.
typename BaseT::BinT BinType
DbnStorage clone() const noexcept Make a copy on the stack.
typename BaseT::BinT BinT
auto mkEstimates(const std::string &path="", const std::string source="", const bool divbyvol=true, const bool includeOverflows=false, const double overflowsWidth=-1.0) Produce a BinnedEstimate for each bin along axis axisN and return as a vector.
virtual int fill(FillType &&coords, const double weight=1.0, const double fraction=1.0) Triggers fill adapter on the bin corresponding to coords.
DbnStorage(const std::vector< AxisT > &... binsEdges, const std::string &path="", const std::string &title="") Constructor giving explicit bin edges as lvalue const reference.
typename BaseT::FillType FillType
double integralTo(const size_t binIndex) const noexcept Get the total volume of the histogram.
double integral(const bool includeOverflows=true) const noexcept Get the total volume of the histogram.
void rebinBy(unsigned int n, size_t begin=1, size_t end=UINT_MAX) Merge every group of n bins, from start to end inclusive.
DbnStorage(const BinningT &binning, const std::string &path="", const std::string &title="") Constructor given a BinningT (needed for type reductions)
BinnedHisto< AxisT... > mkHisto(const std::string &path="") const Produce a BinnedHisto from BinnedProfile.
double mean(size_t axisN, const bool includeOverflows=true) const noexcept Calculates the mean value at axis.
BinnedEstimate< AxisT... > mkBinnedEffNumEntries(const std::string &path="", const std::string &source="", const bool includeOverflows=true, const bool divbyvol=true, const double overflowsWidth=-1.0) Convert the BinnedDbn to a BinnedEstimate representing the effective number of entries in each bin.
DbnStorage(const ScatterND< sizeof...(AxisT)+1 > &s, const std::string &path="", const std::string &title="") Constructor given a scatter.
std::vector< E > edges(const bool includeOverflows=false) const noexcept Returns the edges of axis N by value.
double integralRangeError(const size_t binIndex1, size_t binIndex2) const Calculates the integrated volume error of the histogram between global bins binindex1 and binIndex2.
std::vector< double > serializeContent(bool=false) const noexcept Content serialisation for MPI reduce operations.
void scale(const size_t i, const double scalefactor) noexcept Rescale as if all fill weights had been different by factor scalefactor along dimension i.
DbnStorage() Nullary constructor for unique pointers etc.
double maxDensity(const bool includeOverflows=true) const noexcept Returns the largest density in any of the bins.
void rebin(const std::vector< typename BinningT::template getAxisT< axisN >::EdgeT > &newedges) Overloaded alias for rebinTo.
void rebinTo(const std::vector< typename BinningT::template getAxisT< axisN >::EdgeT > &newedges) Rebin to the given list of bin edges.
size_t dim() const noexcept Total dimension of the object (number of axes + filled value)
DbnStorage & operator=(const DbnStorage &dbn) noexcept Copy assignment.
auto mkScatter(const std::string &path="", const bool divbyvol=true, const bool usefocus=false, const bool includeOverflows=false, const bool includeMaskedBins=false, const double overflowsWidth=-1.0) const Produce a ScatterND from a DbnStorage.
DbnStorage(DbnStorage &&other, const std::string &path="") Move constructor.
User-facing Dbn class inheriting from DbnBase.
typename BaseT::BinningT BinningT
FillCoordsT FillType Type of the fill coordinates.
size_t fillDim() const Returns the dimension of the filling tuple.
int fill(FillCoordsT &&coords, std::index_sequence< Is... >, const double weight=1.0, const double fraction=1.0) noexcept Triggers fill adapter on the bin corresponding to coords.
FillableStorage & operator=(const FillableStorage &other) noexcept Copy assignment.
Bin< sizeof...(AxisT), Dbn< DbnN >, BinningT > BinT
void reset() noexcept Reset the Fillable.
A base class for all fillable objects.
Error for e.g. use of invalid bin ranges.
A generic data type which is just a collection of n-dim data points with errors.
PointND< N > & point(size_t index) Get a reference to the point with index index.
ScatterND< N > & addPoint(const PointND< N > &pt) Insert a new point.
Utils::ndarray< double, N > NdVal
Error for problems introduced outside YODA, to put it nicely.
Errors relating to event/bin weights.
Anonymous namespace to limit visibility.
std::string mkTypeString() Helper function to construct the BinnedDbn and BinnedEstimate type names.
double stdErr(const double sumWX, const double sumW, const double sumWX2, const double sumW2) Calculate the weighted standard error of a sample.
std::enable_if_t< all_CAxes< EdgeT... >::value > enable_if_all_CAxisT Checks if all edge types are continuous.
BinnedEstimate< AxisT... > mkIntegralEff(const BinnedDbn< DbnN, AxisT... > &histo, const bool includeOverflows=true) Convert a BinnedDbn to a BinnedEstimate where each bin is a fraction of the total.
std::string mkAxisConfig() Helper function to construct the axis config.
BinnedDbn< DbnN, AxisT... > operator+(BinnedDbn< DbnN, AxisT... > first, BinnedDbn< DbnN, AxisT... > &&second) Add two BinnedDbn objects.
BinnedEstimate< AxisT... > operator/(const BinnedDbn< DbnN, AxisT... > &numer, const BinnedDbn< DbnN, AxisT... > &denom)
BinnedEstimate< AxisT... > mkIntegral(const BinnedDbn< DbnN, AxisT... > &histo, const bool includeOverflows=true) Convert a BinnedDbn to a BinnedEstimate representing the integral of the histogram.
NUM sqr(NUM a) Named number-type squaring operation.
BinnedEstimate< AxisT... > efficiency(const BinnedDbn< DbnN, AxisT... > &accepted, const BinnedDbn< DbnN, AxisT... > &total) Calculate a binned efficiency ratio of two BinnedDbn objects.
ScatterND< sizeof...(Args)+1 > zipProfiles(const BinnedDbn< DbnN, AxisT... > &p1, Args &&... others, const std::string &path="") Zip profile objects of the same type into a combined scatter object.
BinnedEstimate< AxisT... > asymm(const BinnedDbn< DbnN, AxisT... > &a, const BinnedDbn< DbnN, AxisT... > &b) Calculate the asymmetry (a-b)/(a+b) of two BinnedDbn objects.
BinnedEstimate< AxisT... > add(const BinnedDbn< DbnN, AxisT... > &dbn, const BinnedEstimate< AxisT... > &est) Calculate the addition of a BinnedDbn with a BinnedEstimate.
BinnedEstimate< AxisT... > subtract(const BinnedDbn< DbnN, AxisT... > &dbn, const BinnedEstimate< AxisT... > &est) Calculate the subtraction of a BinnedEstimate from a BinnedDbn.
BinnedDbn< DbnN, AxisT... > operator-(BinnedDbn< DbnN, AxisT... > first, BinnedDbn< DbnN, AxisT... > &&second) Subtract one BinnedDbn object from another.
BinnedEstimate< AxisT... > divide(const BinnedDbn< DbnN, AxisT... > &numer, const BinnedDbn< DbnN, AxisT... > &denom) Divide two BinnedDbn objects.
std::enable_if_t< std::is_floating_point_v< NUM >, bool > isZero(NUM val, double tolerance=1e-5) Compare a number to zero.
double mean(const std::vector< int > &sample) Calculate the mean of a sample.
static const char * name()
|