yoda is hosted by Hepforge, IPPP Durham
YODA - Yet more Objects for Data Analysis 2.1.0
BinnedDbn.h
Go to the documentation of this file.
1// -*- C++ -*-
2//
3// This file is part of YODA -- Yet more Objects for Data Analysis
4// Copyright (C) 2008-2025 The YODA collaboration (see AUTHORS for details)
5//
6#ifndef YODA_BinnedDbn_h
7#define YODA_BinnedDbn_h
8
10#include "YODA/Fillable.h"
12#include "YODA/Dbn.h"
13#include "YODA/BinnedEstimate.h"
14#include "YODA/Scatter.h"
15
16#ifdef HAVE_HDF5
17#include "YODA/Utils/H5Utils.h"
18#endif
19
20#include <memory>
21#include <utility>
22#include <iostream>
23#include <iomanip>
24
25
26namespace YODA {
27
29 /*
44 */
48
49
50 template <size_t DbnN, typename... AxisT>
51 class DbnStorage;
52
54 template <size_t DbnN, typename... AxisT>
55 class BinnedDbn : public DbnStorage<DbnN, AxisT...> {
56 public:
57 using HistoT = BinnedDbn<DbnN, AxisT...>;
58 using BaseT = DbnStorage<DbnN, AxisT...>;
59 using FillType = typename BaseT::FillType;
60 using BinType = typename BaseT::BinT;
61 using Ptr = std::shared_ptr<HistoT>;
62
64 using BaseT::BaseT;
65
66 BinnedDbn() = default;
67 BinnedDbn(const HistoT&) = default;
68 BinnedDbn(HistoT&&) = default;
69 BinnedDbn& operator =(const HistoT&) = default;
71 using AnalysisObject::operator =;
72
76 BinnedDbn(const BaseT& other) : BaseT(other) {}
77 //
78 BinnedDbn(const HistoT& other, const std::string& path) : BaseT(other, path) {}
79
81 BinnedDbn(BaseT&& other) : BaseT(std::move(other)) {}
82 //
83 BinnedDbn(HistoT&& other, const std::string& path) : BaseT(std::move(other), path) {}
84
86 HistoT clone() const noexcept {
87 return HistoT(*this);
88 }
89
91 HistoT* newclone() const noexcept {
92 return new HistoT(*this);
93 }
94
95 };
96
97
100
101 template <typename... AxisTypes>
102 using BinnedHisto = BinnedDbn<sizeof...(AxisTypes), AxisTypes...>;
103
104 template <typename... AxisTypes>
105 using BinnedProfile = BinnedDbn<sizeof...(AxisTypes)+1, AxisTypes...>;
106
108
109
119 template <size_t DbnN, typename... AxisT>
120 class DbnStorage : public FillableStorage<DbnN, Dbn<DbnN>, AxisT...>,
121 public AnalysisObject, public Fillable {
122 public:
123
125 using BinningT = typename BaseT::BinningT;
126 using BinT = typename BaseT::BinT;
127 using BinType = typename BaseT::BinT;
128 using FillType = typename BaseT::FillType;
129 using AnalysisObject::operator =;
130
133
138 DbnStorage() : BaseT(), AnalysisObject(mkTypeString<DbnN, AxisT...>(), "") { }
139
145 DbnStorage(std::vector<AxisT>&&... binsEdges,
146 const std::string& path = "", const std::string& title = "")
147 : BaseT(Axis<AxisT>(std::move(binsEdges))...),
148 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
149
155 DbnStorage(const std::vector<AxisT>&... binsEdges,
156 const std::string& path = "", const std::string& title = "")
157 : BaseT(Axis<AxisT>(binsEdges)...),
158 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
159
165 DbnStorage(std::initializer_list<AxisT>&&... binsEdges,
166 const std::string& path = "", const std::string& title = "")
167 : BaseT(Axis<AxisT>(std::move(binsEdges))...),
168 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
169
174 template <typename EdgeT = double, typename = enable_if_all_CAxisT<EdgeT, AxisT...>>
175 DbnStorage(const std::vector<size_t>& nBins, const std::vector<std::pair<EdgeT, EdgeT>>& limitsLowUp,
176 const std::string& path = "", const std::string& title = "")
177 : BaseT( _mkBinning(nBins, limitsLowUp, std::make_index_sequence<sizeof...(AxisT)>{}) ),
178 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
179
181 DbnStorage(const Axis<AxisT>&... axes, const std::string& path = "", const std::string& title = "")
182 : BaseT(axes...), AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
183
185 DbnStorage(Axis<AxisT>&&... axes, const std::string& path = "", const std::string& title = "")
186 : BaseT(std::move(axes)...), AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
187
189 DbnStorage(const BinningT& binning, const std::string& path = "", const std::string& title = "")
190 : BaseT(binning), AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
191
193 DbnStorage(BinningT&& binning, const std::string& path = "", const std::string& title = "")
194 : BaseT(std::move(binning)), AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
195
197 template <typename EdgeT = double, typename = enable_if_all_CAxisT<EdgeT, AxisT...>>
198 DbnStorage(const ScatterND<sizeof...(AxisT)+1>& s, const std::string& path = "", const std::string& title = "")
199 : BaseT(_mkBinning(s, std::make_index_sequence<sizeof...(AxisT)>{})),
200 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path, title) { }
201
205 DbnStorage(const DbnStorage& other, const std::string& path = "") : BaseT(other),
206 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path!=""? path : other.path(), other, other.title()) { }
207
211 DbnStorage(DbnStorage&& other, const std::string& path = "") : BaseT(std::move(other)),
212 AnalysisObject(mkTypeString<DbnN, AxisT...>(), path!=""? path : other.path(), other, other.title()) { }
213
215 DbnStorage clone() const noexcept {
216 return DbnStorage(*this);
217 }
218
220 DbnStorage* newclone() const noexcept {
221 return new DbnStorage(*this);
222 }
223
225
226
229
234 virtual int fill(FillType&& coords, const double weight = 1.0, const double fraction = 1.0) {
235 return BaseT::fill(std::move(coords), std::make_index_sequence<sizeof...(AxisT)>{}, weight, fraction);
236 }
237
239 void scaleW(const double scalefactor) noexcept {
240 setAnnotation("ScaledBy", annotation<double>("ScaledBy", 1.0) * scalefactor);
241 for (auto& bin : BaseT::_bins) {
242 bin.scaleW(scalefactor);
243 }
244 }
245
247 void scale(const size_t i, const double scalefactor) noexcept {
248 setAnnotation("ScaledBy", annotation<double>("ScaledBy", 1.0) * scalefactor);
249 for (auto& bin : BaseT::_bins) {
250 bin.scale(i, scalefactor);
251 }
252 }
253
254
260 void normalize(const double normto=1.0, const bool includeOverflows=true) {
261 const double oldintegral = integral(includeOverflows);
262 if (oldintegral == 0) throw WeightError("Attempted to normalize a histogram with null area");
263 scaleW(normto / oldintegral);
264 }
265
266
275 template <size_t axisN>
276 void rebinBy(unsigned int n, size_t begin=1, size_t end=UINT_MAX) {
277 if (n < 1) throw UserError("Rebinning requested in groups of 0!");
278 if (!begin) throw UserError("Visible bins start with index 1!");
279 if (end > BaseT::numBinsAt(axisN)+1) end = BaseT::numBinsAt(axisN) + 1;
280 for (size_t m = begin; m < end; ++m) {
281 if (m > BaseT::numBinsAt(axisN)+1) break; // nothing to be done
282 const size_t myend = (m+n-1 < BaseT::numBinsAt(axisN)+1) ? m+n-1 : BaseT::numBinsAt(axisN);
283 if (myend > m) {
284 BaseT::template mergeBins<axisN>({m, myend});
285 end -= myend-m; //< reduce upper index by the number of removed bins
286 }
287 }
288 }
289
291 template <size_t axisN>
292 void rebin(unsigned int n, size_t begin=1, size_t end=UINT_MAX) {
293 rebinBy<axisN>(n, begin, end);
294 }
295
297 template <size_t axisN>
298 void rebinTo(const std::vector<typename BinningT::template getAxisT<axisN>::EdgeT>& newedges) {
299 if (newedges.size() < 2)
300 throw UserError("Requested rebinning to an edge list which defines no bins");
301 using thisAxisT = typename BinningT::template getAxisT<axisN>;
302 using thisEdgeT = typename thisAxisT::EdgeT;
303 // get list of shared edges
304 thisAxisT& oldAxis = BaseT::_binning.template axis<axisN>();
305 const thisAxisT newAxis(newedges);
306 const std::vector<thisEdgeT> eshared = oldAxis.sharedEdges(newAxis);
307 if (eshared.size() != newAxis.edges().size())
308 throw BinningError("Requested rebinning to incompatible edges");
309 // loop over new lower bin edges (= first bin index of merge range)
310 for (size_t begin = 0; begin < eshared.size() - 1; ++begin) {
311 // find index of upper edge along old axis
312 // (subtracting 1 gives index of last bin to be merged)
313 size_t end = oldAxis.index(eshared[begin+1]) - 1;
314 // if the current edge is the last visible edge before the overflow
315 // merge the remaining bins into the overflow
316 if (begin == newAxis.numBins(true)-1) end = oldAxis.numBins(true)-1;
317 // merge this range
318 if (end > begin) BaseT::template mergeBins<axisN>({begin, end});
319 if (eshared.size() == oldAxis.edges().size()) break; // we're done
320 }
321 }
322
324 template <size_t axisN>
325 void rebin(const std::vector<typename BinningT::template getAxisT<axisN>::EdgeT>& newedges) {
326 rebinTo<axisN>(newedges);
327 }
328
330 DbnStorage& operator = (const DbnStorage& dbn) noexcept {
331 if (this != &dbn) {
334 }
335 return *this;
336 }
337
340 if (this != &dbn) {
342 BaseT::operator = (std::move(dbn));
343 }
344 return *this;
345 }
346
347
355 if (*this != dbn)
356 throw BinningError("Arithmetic operation requires compatible binning!");
357 if (AO::hasAnnotation("ScaledBy")) AO::rmAnnotation("ScaledBy");
358 for (size_t i = 0; i < BaseT::numBins(true, true); ++i) {
359 BaseT::bin(i) += dbn.bin(i);
360 }
361 BaseT::maskBins(dbn.maskedBins(), true);
362 return *this;
363 }
364 //
366 if (*this != dbn)
367 throw BinningError("Arithmetic operation requires compatible binning!");
368 if (AO::hasAnnotation("ScaledBy")) AO::rmAnnotation("ScaledBy");
369 for (size_t i = 0; i < BaseT::numBins(true, true); ++i) {
370 BaseT::bin(i) += std::move(dbn.bin(i));
371 }
372 BaseT::maskBins(dbn.maskedBins(), true);
373 return *this;
374 }
375
376
382 if (*this != dbn)
383 throw BinningError("Arithmetic operation requires compatible binning!");
384 if (AO::hasAnnotation("ScaledBy")) AO::rmAnnotation("ScaledBy");
385 for (size_t i = 0; i < BaseT::numBins(true, true); ++i) {
386 BaseT::bin(i) -= dbn.bin(i);
387 }
388 BaseT::maskBins(dbn.maskedBins(), true);
389 return *this;
390 }
391 //
393 if (*this != dbn)
394 throw BinningError("Arithmetic operation requires compatible binning!");
395 if (AO::hasAnnotation("ScaledBy")) AO::rmAnnotation("ScaledBy");
396 for (size_t i = 0; i < BaseT::numBins(true, true); ++i) {
397 BaseT::bin(i) -= std::move(dbn.bin(i));
398 }
399 BaseT::maskBins(dbn.maskedBins(), true);
400 return *this;
401 }
402
404
407
411 void reset() noexcept { BaseT::reset(); }
412
414
415
418
419 size_t fillDim() const noexcept { return BaseT::fillDim(); }
420
422 size_t dim() const noexcept { return sizeof...(AxisT) + 1; }
423
425 std::string _config() const noexcept { return mkAxisConfig<AxisT...>(); }
426
428 template <size_t I, typename E = typename BinningT::template getEdgeT<I>>
429 std::vector<E> edges(const bool includeOverflows = false) const noexcept {
430 return BaseT::_binning.template edges<I>(includeOverflows);
431 }
432
439 template <size_t I, typename E = typename BinningT::template getEdgeT<I>>
440 std::enable_if_t<std::is_floating_point<E>::value, std::vector<E>>
441 widths(const bool includeOverflows = false) const noexcept {
442 return BaseT::_binning.template widths<I>(includeOverflows);
443 }
444
448 template <size_t I, typename E = typename BinningT::template getEdgeT<I>>
449 std::enable_if_t<std::is_floating_point<E>::value, E> min() const noexcept {
450 return BaseT::_binning.template min<I>();
451 }
452
456 template <size_t I, typename E = typename BinningT::template getEdgeT<I>>
457 std::enable_if_t<std::is_floating_point<E>::value, E> max() const noexcept {
458 return BaseT::_binning.template max<I>();
459 }
460
462
463
466
468 double integral(const bool includeOverflows=true) const noexcept {
469 return sumW(includeOverflows);
470 }
471
473 double integralError(const bool includeOverflows=true) const noexcept {
474 return sqrt(sumW2(includeOverflows));
475 }
476
478 double integralTo(const size_t binIndex) const noexcept {
479 return integralRange(0, binIndex);
480 }
481
484 double integralRange(const size_t binIndex1, size_t binIndex2) const {
485 assert(binIndex2 >= binIndex1);
486 if (binIndex1 >= BaseT::numBins(true)) throw RangeError("binindex1 is out of range");
487 if (binIndex2 >= BaseT::numBins(true)) throw RangeError("binindex2 is out of range");
488 double sumw = 0;
489 for (size_t idx = binIndex1; idx <= binIndex2; ++idx) {
490 if (BaseT::bin(idx).isMasked()) continue;
491 sumw += BaseT::bin(idx).sumW();
492 }
493 return sumw;
494 }
495
498 double integralRangeError(const size_t binIndex1, size_t binIndex2) const {
499 assert(binIndex2 >= binIndex1);
500 if (binIndex1 >= BaseT::numBins(true)) throw RangeError("binindex1 is out of range");
501 if (binIndex2 >= BaseT::numBins(true)) throw RangeError("binindex2 is out of range");
502 double sumw2 = 0;
503 for (size_t idx = binIndex1; idx <= binIndex2; ++idx) {
504 if (BaseT::bin(idx).isMasked()) continue;
505 sumw2 += BaseT::bin(idx).sumW2();
506 }
507 return sumw2;
508 }
509
511 double numEntries(const bool includeOverflows=true) const noexcept {
512 double n = 0;
513 for (const auto& b : BaseT::bins(includeOverflows))
514 n += b.numEntries();
515 return n;
516 }
517
519 double effNumEntries(const bool includeOverflows=true) const noexcept {
520 double n = 0;
521 for (const auto& b : BaseT::bins(includeOverflows))
522 n += b.effNumEntries();
523 return n;
524 }
525
527 double sumW(const bool includeOverflows=true) const noexcept {
528 double sumw = 0;
529 for (const auto& b : BaseT::bins(includeOverflows))
530 sumw += b.sumW();
531 return sumw;
532 }
533
535 double sumW2(const bool includeOverflows=true) const noexcept {
536 double sumw2 = 0;
537 for (const auto& b : BaseT::bins(includeOverflows))
538 sumw2 += b.sumW2();
539 return sumw2;
540 }
541
543 double sumWA(const size_t dim, const bool includeOverflows=true) const {
544 if (dim >= DbnN) throw RangeError("Invalid axis int, must be in range 0..dim-1");
545 double sumwa = 0;
546 for (const auto& b : BaseT::bins(includeOverflows))
547 sumwa += b.sumW(dim+1);
548 return sumwa;
549 }
550
552 double sumWA2(const size_t dim, const bool includeOverflows=true) const {
553 if (dim >= DbnN) throw RangeError("Invalid axis int, must be in range 0..dim-1");
554 double sumwa2 = 0;
555 for (const auto& b : BaseT::bins(includeOverflows))
556 sumwa2 += b.sumW2(dim+1);
557 return sumwa2;
558 }
559
561 template<size_t dim = DbnN, typename = std::enable_if_t<(dim >= 2)>>
562 double crossTerm(const size_t A1, const size_t A2, const bool includeOverflows=true) const {
563 if (A1 >= DbnN || A2 >= DbnN) throw RangeError("Invalid axis int, must be in range 0..dim-1");
564 if (A1 >= A2) throw RangeError("Indices need to be different for cross term");
565 double sumw = 0;
566 for (const auto& b : BaseT::bins(includeOverflows))
567 sumw += b.crossTerm(A1, A2);
568 return sumw;
569 }
570
572 double mean(size_t axisN, const bool includeOverflows=true) const noexcept {
573 Dbn<DbnN> dbn;
574 for (const auto& b : BaseT::bins(includeOverflows))
575 dbn += b;
576 return dbn.mean(axisN+1);
577 }
578
580 double variance(size_t axisN, const bool includeOverflows=true) const noexcept {
581 Dbn<DbnN> dbn;
582 for (const auto& b : BaseT::bins(includeOverflows))
583 dbn += b;
584 return dbn.variance(axisN+1);
585 }
586
588 double stdDev(size_t axisN, const bool includeOverflows=true) const noexcept {
589 return std::sqrt(variance(axisN, includeOverflows));
590 }
591
593 double stdErr(size_t axisN, const bool includeOverflows=true) const noexcept {
594 Dbn<DbnN> dbn;
595 for (const auto& b : BaseT::bins(includeOverflows))
596 dbn += b;
597 return dbn.stdErr(axisN+1);
598 }
599
601 double rms(size_t axisN, const bool includeOverflows=true) const noexcept {
602 Dbn<DbnN> dbn;
603 for (const auto& b : BaseT::bins(includeOverflows))
604 dbn += b;
605 return dbn.RMS(axisN+1);
606 }
607
608 double dVol(const bool includeOverflows=true) const noexcept {
609 double vol = 0.0;
610 for (const auto& b : BaseT::bins(includeOverflows))
611 vol += b.dVol();
612 return vol;
613 }
614
616 double density(const bool includeOverflows=true) const noexcept {
617 const double vol = dVol(includeOverflows);
618 if (vol) return integral(includeOverflows) / vol;
619 return std::numeric_limits<double>::quiet_NaN();
620 }
621
623 double densityError(const bool includeOverflows=true) const noexcept {
624 const double vol = dVol(includeOverflows);
625 if (vol) return integralError(includeOverflows) / vol;
626 return std::numeric_limits<double>::quiet_NaN();
627 }
628
630 double densitySum(const bool includeOverflows=true) const noexcept {
631 double rho = 0.0;
632 for (const auto& b : BaseT::bins(includeOverflows))
633 rho += b.sumW() / b.dVol();
634 return rho;
635 }
636
638 double maxDensity(const bool includeOverflows=true) const noexcept {
639 std::vector<double> vals;
640 for (auto& b : BaseT::bins(includeOverflows))
641 vals.emplace_back(b.sumW() / b.dVol());
642 return *max_element(vals.begin(), vals.end());
643 }
644
646
649
650 private:
651
652 // @brief Render information about this AO (private implementation)
653 template<size_t... Is>
654 void _renderYODA_aux(std::ostream& os, const int width, std::index_sequence<Is...>) const noexcept {
655
656 // YODA1-style metadata
657 if ( effNumEntries(true) > 0 ) {
658 os << "# Mean: ";
659 if (DbnN > 1) { os << "("; }
660 (( os << std::string(Is? ", " : "") << mean(Is, true)), ...);
661 if (DbnN > 1) { os << ")"; }
662 os << "\n# Integral: " << integral(true) << "\n";
663 }
664
665 // render bin edges
666 BaseT::_binning._renderYODA(os);
667
668 // column header: content types
669 os << std::setw(width) << std::left << "# sumW" << "\t";
670 os << std::setw(width) << std::left << "sumW2" << "\t";
671 (( os << std::setw(width) << std::left << ("sumW(A" + std::to_string(Is+1) + ")") << "\t"
672 << std::setw(width) << std::left << ("sumW2(A" + std::to_string(Is+1) + ")") << "\t"), ...);
673 if constexpr (DbnN >= 2) {
674 for (size_t i = 0; i < (DbnN-1); ++i) {
675 for (size_t j = i+1; j < DbnN; ++j) {
676 const std::string scross = "sumW(A" + std::to_string(i+1) + ",A" + std::to_string(j+1) + ")";
677 os << std::setw(width) << std::left << scross << "\t";
678 }
679 }
680 }
681 os << "numEntries\n";
682 // now write one row per bin
683 for (const auto& b : BaseT::bins(true, true)) {
684 os << std::setw(width) << std::left << b.sumW() << "\t"; // renders sumW
685 os << std::setw(width) << std::left << b.sumW2() << "\t"; // renders sumW2
686 ((os << std::setw(width) << std::left << b.sumW( Is+1) << "\t"
687 << std::setw(width) << std::left << b.sumW2(Is+1) << "\t"), ...); // renders first moments
688 if constexpr (DbnN >= 2) {
689 for (size_t i = 0; i < (DbnN-1); ++i) {
690 for (size_t j = i+1; j < DbnN; ++j) {
691 os << std::setw(width) << std::left << b.crossTerm(i,j) << "\t";
692 }
693 }
694 }
695 os << std::setw(width) << std::left << b.numEntries() << "\n"; // renders raw event count
696 }
697 }
698
699 public:
700
701 // @brief Render information about this AO (public API)
702 void _renderYODA(std::ostream& os, const int width = 13) const noexcept {
703 _renderYODA_aux(os, width, std::make_index_sequence<DbnN>{});
704 }
705
706 // @brief Render scatter-like information about this AO
707 void _renderFLAT(std::ostream& os, const int width = 13) const noexcept {
708 const ScatterND<sizeof...(AxisT)+1> tmp = mkScatter();
709 tmp._renderYODA(os, width);
710 }
711
712 #ifdef HAVE_HDF5
713 // @brief Extract axes edges of this AO into map of @a edges
714 void _extractEdges(std::map<std::string, EdgeHandlerBasePtr>& edges,
715 const std::vector<std::string>&) const noexcept {
716
717 using lenT = EdgeHandler<size_t>;
718 using lenPtr = EdgeHandlerPtr<size_t>;
719 const std::string lengthID("sizeinfo");
720 lenPtr nedges = std::static_pointer_cast<lenT>(edges.find(lengthID)->second);
721
722 auto extractEdges = [&edges, &binning = BaseT::_binning, &nedges](auto I) {
723
724 using thisEdgeT = typename BinningT::template getEdgeT<I>;
725 using thisHandlerT = EdgeHandler<thisEdgeT>;
726 using thisHandlerPtr = EdgeHandlerPtr<thisEdgeT>;
727
728 const std::string edgeID = std::string("edges_") + TypeID<thisEdgeT>::name();
729 std::vector<thisEdgeT> tmp = binning.template edges<I>();
730 nedges->extend({ tmp.size() });
731
732 auto itr = edges.find(edgeID);
733 if (itr != edges.cend()) {
734 thisHandlerPtr edgeset = std::static_pointer_cast<thisHandlerT>(itr->second);
735 edgeset->extend(std::move(tmp));
736 }
737 else {
738 edges[edgeID] = std::make_shared<thisHandlerT>(std::move(tmp));
739 }
740 };
741 MetaUtils::staticFor<sizeof...(AxisT)>(extractEdges);
742
743 std::vector<size_t> masks = BaseT::_binning.maskedBins();
744 nedges->extend({ masks.size() });
745 nedges->extend(std::move(masks));
746
747 };
748 #endif
749
751
753
754
755 size_t lengthContent(bool = false) const noexcept {
756 return BaseT::numBins(true, true) * Dbn<DbnN>::DataSize::value;
757 }
758
759 std::vector<double> serializeContent(bool = false) const noexcept {
760 std::vector<double> rtn;
761 const size_t nBins = BaseT::numBins(true, true);
762 rtn.reserve(nBins * Dbn<DbnN>::DataSize::value);
763 for (size_t i = 0; i < nBins; ++i) {
764 std::vector<double> bdata = BaseT::bin(i)._serializeContent();
765 rtn.insert(std::end(rtn),
766 std::make_move_iterator(std::begin(bdata)),
767 std::make_move_iterator(std::end(bdata)));
768 }
769 return rtn;
770 }
771
772 void deserializeContent(const std::vector<double>& data) {
773
774 constexpr size_t dbnSize = Dbn<DbnN>::DataSize::value;
775 const size_t nBins = BaseT::numBins(true, true);
776 if (data.size() != nBins * dbnSize)
777 throw UserError("Length of serialized data should be "
778 + std::to_string(nBins * dbnSize)+"!");
779
780 const auto itr = data.cbegin();
781 for (size_t i = 0; i < nBins; ++i) {
782 auto first = itr + i*dbnSize;
783 auto last = first + dbnSize;
784 BaseT::bin(i)._deserializeContent(std::vector<double>{first, last});
785 }
786
787 }
788
789 // @}
790
793
800 BinnedEstimate<AxisT...> mkEstimate(const std::string& path = "",
801 const std::string& source = "",
802 [[maybe_unused]] const bool divbyvol = true,
803 const double overflowsWidth = -1.0) const {
804
805 // @todo Should we check BaseT::nanCount() and report?
806 BinnedEstimate<AxisT...> rtn(BaseT::_binning);
807 for (const std::string& a : annotations()) {
808 if (a != "Type") rtn.setAnnotation(a, annotation(a));
809 }
810 rtn.setAnnotation("Path", path);
811
812 if (BaseT::nanCount()) {
813 const double nanc = BaseT::nanCount();
814 const double nanw = BaseT::nanSumW();
815 const double frac = nanc / (nanc + numEntries());
816 const double wtot = nanw + effNumEntries();
817 rtn.setAnnotation("NanFraction", frac);
818 if (wtot) rtn.setAnnotation("WeightedNanFraction", nanw/wtot);
819 }
820
821 for (const auto& b : BaseT::bins(true, true)) {
822 if (overflowsWidth <= 0. && !b.isVisible()) continue;
823 if constexpr(DbnN > sizeof...(AxisT)) {
824 rtn.bin(b.index()).setVal(b.mean(DbnN));
825 if (b.numEntries()) { // only set uncertainty for filled Dbns
826 rtn.bin(b.index()).setErr(b.stdErr(DbnN), source);
827 }
828 }
829 else {
830 const double scale = divbyvol? (b.isVisible()? b.dVol() : overflowsWidth) : 1.0;
831 rtn.bin(b.index()).setVal(b.sumW() / scale);
832 if (b.numEntries()) { // only set uncertainty for filled Dbns
833 rtn.bin(b.index()).setErr(b.errW() / scale, source);
834 }
835 }
836 }
837
838 return rtn;
839 }
840
848 template<size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT)) >>
849 auto mkEstimates(const std::string& path = "", const std::string source = "",
850 const bool divbyvol = true, const bool includeOverflows = false,
851 const double overflowsWidth = -1.0) {
852
853 BinnedEstimate<AxisT...> est = mkEstimate(path, source, divbyvol, overflowsWidth);
854 return est.template mkEstimates<axisN>(path, includeOverflows);
855 }
856
857
862 auto mkScatter(const std::string& path="", const bool divbyvol = true,
863 const bool usefocus = false,
864 const bool includeOverflows = false,
865 const bool includeMaskedBins = false,
866 const double overflowsWidth = -1.0) const {
867 const BinnedEstimate<AxisT...> est = mkEstimate("", "", divbyvol, overflowsWidth);
868 ScatterND<sizeof...(AxisT)+1> rtn = est.mkScatter(path, "", includeOverflows, includeMaskedBins);
869 if (usefocus) {
870 size_t idx = 0;
871 for (const auto& b : BaseT::bins(includeOverflows, includeMaskedBins)) {
872 auto shiftIfContinuous = [&rtn, &b, &idx](auto I) {
873 using isContinuous = typename BinningT::template is_CAxis<I>;
874 if constexpr (isContinuous::value) {
875 const double oldMax = rtn.point(idx).max(I);
876 const double oldMin = rtn.point(idx).min(I);
877 const double newVal = b.mean(I+1);
878 rtn.point(idx).set(I, newVal, newVal - oldMin, oldMax - newVal);
879 }
880 };
881 MetaUtils::staticFor<BinningT::Dimension::value>(shiftIfContinuous);
882 ++idx;
883 }
884 }
885 return rtn;
886 }
887
892 template<size_t N = DbnN, typename = std::enable_if_t< (N == sizeof...(AxisT)+1) >>
893 BinnedHisto<AxisT...> mkHisto(const std::string& path="") const {
894
895 BinnedHisto<AxisT...> rtn(BaseT::_binning);
896 rtn.setNanLog(BaseT::nanCount(), BaseT::nanSumW(), BaseT::nanSumW2());
897 for (const std::string& a : annotations()) {
898 if (a != "Type") rtn.setAnnotation(a, annotation(a));
899 }
900 rtn.setAnnotation("Path", path);
901
902 for (const auto& b : BaseT::bins(true)) {
903 rtn.bin(b.index()) += b.template reduce<N-1>();
904 }
905
906 return rtn;
907 }
908
920 template<size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT)) >>
921 auto mkMarginalProfile(const std::string& path="") const {
922
923 auto rtn = BaseT::template _mkBinnedT<BinnedProfile>(BaseT::_binning.template _getAxesExcept<axisN>());
924 rtn.setNanLog(BaseT::nanCount(), BaseT::nanSumW(), BaseT::nanSumW2());
925 for (const std::string& a : annotations()) {
926 if (a != "Type") rtn.setAnnotation(a, annotation(a));
927 }
928 rtn.setAnnotation("Path", path);
929
930 auto collapseStorageBins =
931 [&oldBinning = BaseT::_binning, &oldBins = BaseT::_bins, &rtn](auto I, auto dbnRed) {
932
933 auto collapse = [&oldBins, &rtn](const auto& binsIndicesToMerge, auto axis) {
934 assert(rtn.numBins(true) == binsIndicesToMerge.size());
935
936 // for any given pivot, add the content
937 // from the old slice to the new slice
938 for (size_t i = 0; i < rtn.numBins(true); ++i) {
939 auto& pivotBin = rtn.bin(i);
940 auto& binToAppend = oldBins[binsIndicesToMerge[i]];
941 pivotBin += binToAppend.template reduce<axis>();
942 }
943 };
944
945 // get bin slice for any given bin along the axis that is to be
946 // collapsed, then copy the values into the new binning
947 ssize_t nBinRowsToBeMerged = oldBinning.numBinsAt(I);
948 while (nBinRowsToBeMerged--) {
951 collapse(oldBinning.sliceIndices(I, nBinRowsToBeMerged), dbnRed);
952 }
953 };
957 auto dbnRed = std::integral_constant<size_t, (sizeof...(AxisT) == DbnN)? DbnN : axisN>();
958 (void)collapseStorageBins(std::integral_constant<std::size_t, axisN>(), dbnRed);
959
960 return rtn;
961 }
962
974 template<size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT)) >>
975 auto mkMarginalHisto(const std::string& path="") const {
976
977 if constexpr (DbnN != sizeof...(AxisT)) {
978 // Case 1: BP(N+1) -> BH(N+1) -> BHN
979 return mkHisto().template mkMarginalHisto<axisN>(path);
980 }
981 else {
982 // Case 2: BH(N+1) -> BHN
983
984 auto rtn = BaseT::template _mkBinnedT<BinnedHisto>(BaseT::_binning.template _getAxesExcept<axisN>());
985 rtn.setNanLog(BaseT::nanCount(), BaseT::nanSumW(), BaseT::nanSumW2());
986 for (const std::string& a : annotations()) {
987 if (a != "Type") rtn.setAnnotation(a, annotation(a));
988 }
989 rtn.setAnnotation("Path", path);
990
991 auto collapseStorageBins =
992 [&oldBinning = BaseT::_binning, &oldBins = BaseT::_bins, &rtn](auto I, auto dbnRed) {
993
994 auto collapse = [&oldBins, &rtn](const auto& binsIndicesToMerge, auto axis) {
995 assert(rtn.numBins(true) == binsIndicesToMerge.size());
996
997 // for any given pivot, add the content
998 // from the old slice to the new slice
999 for (size_t i = 0; i < rtn.numBins(true); ++i) {
1000 auto& pivotBin = rtn.bin(i);
1001 auto& binToAppend = oldBins[binsIndicesToMerge[i]];
1002 pivotBin += binToAppend.template reduce<axis>();
1003 }
1004 };
1005
1006 // get bin slice for any given bin along the axis that is to be
1007 // collapsed, then copy the values into the new binning
1008 ssize_t nBinRowsToBeMerged = oldBinning.numBinsAt(I);
1009 while (nBinRowsToBeMerged--) {
1012 collapse(oldBinning.sliceIndices(I, nBinRowsToBeMerged), dbnRed);
1013 }
1014 };
1015 // collapse Dbn along axisN
1016 auto dbnRed = std::integral_constant<size_t, axisN>();
1017 (void)collapseStorageBins(std::integral_constant<std::size_t, axisN>(), dbnRed);
1018
1019 return rtn;
1020 }
1021 }
1022
1023
1028 template<size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT) &&
1029 sizeof...(AxisT)>=2 &&
1030 DbnN > sizeof...(AxisT)) >>
1031 auto mkProfiles(const std::string& path="", const bool includeOverflows=false) const {
1032
1033 // Need to provide a prescription for how to add the two bin contents
1034 auto how2add = [](auto& pivot, const BinType& toCopy) { pivot = toCopy.template reduce<axisN>(); };
1035 auto rtn = BaseT::template mkBinnedSlices<axisN, BinnedProfile>(how2add, includeOverflows);
1036 for (const std::string& a : annotations()) {
1037 if (a == "Type") continue;
1038 for (size_t i = 0; i < rtn.size(); ++i) {
1039 rtn[i].setAnnotation(a, annotation(a));
1040 }
1041 }
1042 for (size_t i = 0; i < rtn.size(); ++i) {
1043 rtn[i].setAnnotation("Path", path);
1044 }
1045 return rtn;
1046 }
1047
1048
1053 template<size_t axisN, typename = std::enable_if_t< (axisN < sizeof...(AxisT) && sizeof...(AxisT)>=2) >>
1054 auto mkHistos(const std::string& path="", const bool includeOverflows=false) const {
1055
1056 if constexpr (DbnN != sizeof...(AxisT)) {
1057 // Case 1: BP(N+1) -> BH(N+1) -> BHN
1058 return mkHisto().template mkHistos<axisN>(path, includeOverflows);
1059 }
1060 else {
1061 // Case 2: BH(N+1) -> BHN
1062
1063 // Need to provide a prescription for how to add the two bin contents
1064 auto how2add = [](auto& pivot, const BinType& toCopy) { pivot = toCopy.template reduce<axisN>(); };
1065 auto rtn = BaseT::template mkBinnedSlices<axisN,BinnedHisto>(how2add, includeOverflows);
1066 for (const std::string& a : annotations()) {
1067 if (a == "Type") continue;
1068 for (size_t i = 0; i < rtn.size(); ++i) {
1069 rtn[i].setAnnotation(a, annotation(a));
1070 }
1071 }
1072 for (size_t i = 0; i < rtn.size(); ++i) {
1073 rtn[i].setAnnotation("Path", path);
1074 }
1075 return rtn;
1076 }
1077 }
1078
1079
1085 BinnedEstimate<AxisT...> mkBinnedEffNumEntries(const std::string& path="",
1086 const std::string& source = "",
1087 const bool includeOverflows = true,
1088 const bool divbyvol = true,
1089 const double overflowsWidth = -1.0) {
1090
1091 BinnedEstimate<AxisT...> rtn = mkEstimate(path);
1092
1093 for (const auto& b : BaseT::bins(includeOverflows)) {
1094 double scale = 1.0;
1095 if (divbyvol) {
1096 scale = (overflowsWidth > 0. && !b.isVisible())? overflowsWidth : b.dVol();
1097 }
1098 const double effN = b.effNumEntries() / scale;
1099 const double err = effN * b.relErrW() / scale;
1100 rtn.bin(b.index()).set(effN, {-err, err}, source);
1101 }
1102
1103 return rtn;
1104 }
1105
1106
1108 AnalysisObject* mkInert(const std::string& path = "",
1109 const std::string& source = "") const noexcept {
1110 return mkEstimate(path, source).newclone();
1111 }
1112
1114
1115 private:
1116
1119 template<size_t... Is>
1120 BinningT _mkBinning(const std::vector<size_t>& nBins,
1121 const std::vector<std::pair<double, double>>& limitsLowUp,
1122 std::index_sequence<Is...>) const {
1123 return BinningT({((void)Is, Axis<AxisT>(nBins[Is], limitsLowUp[Is].first, limitsLowUp[Is].second))...});
1124 }
1125
1127 template<size_t... Is>
1128 BinningT _mkBinning(const ScatterND<sizeof...(AxisT)+1>& s, std::index_sequence<Is...>) const {
1129 return BinningT(Axis<AxisT>(s.edges(Is))...);
1130 }
1131
1132 };
1133
1134
1135
1138
1140 template<size_t DbnN, typename... AxisT>
1141 inline BinnedDbn<DbnN, AxisT...>
1143 first += std::move(second);
1144 return first;
1145 }
1146 //
1147 template <size_t DbnN, typename... AxisT>
1148 inline BinnedDbn<DbnN, AxisT...>
1150 first += second;
1151 return first;
1152 }
1153
1154
1156 template <size_t DbnN, typename... AxisT>
1157 inline BinnedDbn<DbnN, AxisT...>
1159 first -= std::move(second);
1160 return first;
1161 }
1162 //
1163 template <size_t DbnN, typename... AxisT>
1164 inline BinnedDbn<DbnN, AxisT...>
1166 first -= second;
1167 return first;
1168 }
1169
1170
1172 template <size_t DbnN, typename... AxisT>
1173 inline BinnedEstimate<AxisT...>
1175
1176 if (numer != denom) {
1177 throw BinningError("Arithmetic operation requires compatible binning!");
1178 }
1179
1180 BinnedEstimate<AxisT...> rtn = numer.mkEstimate();
1181 if (numer.path() == denom.path()) rtn.setPath(numer.path());
1182 if (rtn.hasAnnotation("ScaledBy")) rtn.rmAnnotation("ScaledBy");
1183
1184 for (const auto& b_num : numer.bins(true, true)) {
1185 const size_t idx = b_num.index();
1186 const auto& b_den = denom.bin(idx);
1187 double v, e;
1188 if (isZero(b_den.effNumEntries())) {
1189 v = std::numeric_limits<double>::quiet_NaN();
1190 e = std::numeric_limits<double>::quiet_NaN();
1191 }
1192 else {
1193 if constexpr(DbnN > sizeof...(AxisT)) {
1194 v = b_num.mean(DbnN) / b_den.mean(DbnN);
1195 const double e_num = isZero(b_num.effNumEntries())? 0 : b_num.relStdErr(DbnN);
1196 const double e_den = isZero(b_den.effNumEntries())? 0 : b_den.relStdErr(DbnN);
1197 e = fabs(v) * sqrt(sqr(e_num) + sqr(e_den));
1198 }
1199 else {
1200 v = b_num.sumW() / b_den.sumW();
1201 const double e_num = isZero(b_num.effNumEntries())? 0 : b_num.relErrW();
1202 const double e_den = isZero(b_den.effNumEntries())? 0 : b_den.relErrW();
1203 e = fabs(v) * sqrt(sqr(e_num) + sqr(e_den));
1204 }
1205 }
1206 rtn.bin(idx).set(v, {-e, e}); // @todo put "stats" as source?
1207 }
1208 rtn.maskBins(denom.maskedBins(), true);
1209
1210 return rtn;
1211 }
1212 //
1213 template <size_t DbnN, typename... AxisT>
1214 inline BinnedEstimate<AxisT...>
1216 return divide(numer, denom);
1217 }
1218 //
1219 template <size_t DbnN, typename... AxisT>
1220 inline BinnedEstimate<AxisT...>
1222 return divide(numer, std::move(denom));
1223 }
1224 //
1225 template <size_t DbnN, typename... AxisT>
1226 inline BinnedEstimate<AxisT...>
1228 return divide(std::move(numer), denom);
1229 }
1230 //
1231 template <size_t DbnN, typename... AxisT>
1232 inline BinnedEstimate<AxisT...>
1234 return divide(std::move(numer), std::move(denom));
1235 }
1236
1237
1242 template <size_t DbnN, typename... AxisT>
1243 inline BinnedEstimate<AxisT...>
1245
1246 if (accepted != total) {
1247 throw BinningError("Arithmetic operation requires compatible binning!");
1248 }
1249
1250 BinnedEstimate<AxisT...> rtn = divide(accepted, total);
1251
1252 for (const auto& b_acc : accepted.bins(true, true)) {
1253 const auto& b_tot = total.bin(b_acc.index());
1254 auto& b_rtn = rtn.bin(b_acc.index());
1255
1256 // Check that the numerator is consistent with being a subset of the denominator
1258 if (b_acc.numEntries() > b_tot.numEntries())
1259 throw UserError("Attempt to calculate an efficiency when the numerator is not a subset of the denominator: "
1260 + Utils::toStr(b_acc.numEntries()) + " entries / " + Utils::toStr(b_tot.numEntries()) + " entries");
1261
1262 // If no entries on the denominator, set eff = err = 0 and move to the next bin
1263 double eff = std::numeric_limits<double>::quiet_NaN();
1264 double err = std::numeric_limits<double>::quiet_NaN();
1265 if (!isZero(b_tot.effNumEntries())) {
1266 eff = b_rtn.val();
1267 err = sqrt(fabs( add((1.0-2.0*eff)*b_acc.sumW2(), sqr(eff)*b_tot.sumW2()) / sqr(b_tot.sumW()) ));
1268 }
1269 b_rtn.setErr({-err, err}); // @todo put "stats" as source?
1270 }
1271 return rtn;
1272 }
1273
1274
1276 template <size_t DbnN, typename... AxisT>
1277 inline BinnedEstimate<AxisT...>
1279 return (a-b) / (a+b);
1280 }
1281
1282
1291 template <size_t DbnN, typename... AxisT>
1292 inline BinnedEstimate<AxisT...>
1293 mkIntegral(const BinnedDbn<DbnN, AxisT...>& histo, const bool includeOverflows = true) {
1294
1295 BinnedEstimate<AxisT...> rtn = histo.mkEstimate();
1296
1297 double sumW = 0.0, sumW2 = 0.0;
1298 for (const auto& b : histo.bins(includeOverflows)) {
1299 sumW += b.sumW();
1300 sumW2 += b.sumW2();
1301 const double e = sqrt(sumW2);
1302 rtn.bin(b.index()).set(sumW, {-e, e});
1303 }
1304
1305 return rtn;
1306 }
1307
1308
1320 template <size_t DbnN, typename... AxisT>
1321 inline BinnedEstimate<AxisT...>
1322 mkIntegralEff(const BinnedDbn<DbnN, AxisT...>& histo, const bool includeOverflows = true) {
1323
1324 BinnedEstimate<AxisT...> rtn = mkIntegral(histo, includeOverflows);
1325 const double integral = histo.integral(includeOverflows);
1326
1327 // If the integral is empty, the (integrated) efficiency values may as well all be zero, so return here
1331 if (!integral) return rtn;
1332
1333 const double integral_err = histo.integralError(includeOverflows);
1334 for (const auto& b : rtn.bins(includeOverflows)) {
1335 const double eff = b.val() / integral;
1336 const double err = sqrt(std::abs( ((1-2*eff)*sqr(b.relTotalErrAvg()) + sqr(eff)*sqr(integral_err)) / sqr(integral) ));
1337 b.set(eff, {-err,err});
1338 }
1339
1340 return rtn;
1341 }
1342
1343
1345 template <size_t DbnN, typename... AxisT>
1346 inline BinnedEstimate<AxisT...>
1348 return dbn.mkEstimate() + est;
1349 }
1350 //
1351 template <size_t DbnN, typename... AxisT>
1352 inline BinnedEstimate<AxisT...>
1354 return add(dbn, est);
1355 }
1356 //
1357 template <size_t DbnN, typename... AxisT>
1358 inline BinnedEstimate<AxisT...>
1360 return add(std::move(dbn), est);
1361 }
1362 //
1363 template <size_t DbnN, typename... AxisT>
1364 inline BinnedEstimate<AxisT...>
1366 return add(dbn, std::move(est));
1367 }
1368 //
1369 template <size_t DbnN, typename... AxisT>
1370 inline BinnedEstimate<AxisT...>
1372 return add(std::move(dbn), std::move(est));
1373 }
1374
1375
1377 template <size_t DbnN, typename... AxisT>
1378 inline BinnedEstimate<AxisT...>
1380 return dbn.mkEstimate() - est;
1381 }
1382 //
1383 template <size_t DbnN, typename... AxisT>
1384 inline BinnedEstimate<AxisT...>
1386 return subtract(dbn, est);
1387 }
1388 //
1389 template <size_t DbnN, typename... AxisT>
1390 inline BinnedEstimate<AxisT...>
1392 return subtract(std::move(dbn), est);
1393 }
1394 //
1395 template <size_t DbnN, typename... AxisT>
1396 inline BinnedEstimate<AxisT...>
1398 return subtract(dbn, std::move(est));
1399 }
1400 //
1401 template <size_t DbnN, typename... AxisT>
1402 inline BinnedEstimate<AxisT...>
1404 return subtract(std::move(dbn), std::move(est));
1405 }
1406
1407
1409 template <size_t DbnN, typename... AxisT>
1410 inline BinnedEstimate<AxisT...>
1412 return dbn.mkEstimate() / est;
1413 }
1414 //
1415 template <size_t DbnN, typename... AxisT>
1416 inline BinnedEstimate<AxisT...>
1418 return divide(dbn, est);
1419 }
1420 //
1421 template <size_t DbnN, typename... AxisT>
1422 inline BinnedEstimate<AxisT...>
1424 return divide(std::move(dbn), est);
1425 }
1426 //
1427 template <size_t DbnN, typename... AxisT>
1428 inline BinnedEstimate<AxisT...>
1430 return divide(dbn, std::move(est));
1431 }
1432 //
1433 template <size_t DbnN, typename... AxisT>
1434 inline BinnedEstimate<AxisT...>
1436 return divide(std::move(dbn), std::move(est));
1437 }
1438
1439
1448 template<size_t DbnN, typename... AxisT, typename... Args,
1449 typename = std::enable_if_t<(DbnN == sizeof...(AxisT)+1 &&
1450 (std::is_same_v<BinnedDbn<DbnN, AxisT...>, Args> && ...))>>
1451 ScatterND<sizeof...(Args)+1> zipProfiles(const BinnedDbn<DbnN, AxisT...>& p1, Args&&... others,
1452 const std::string& path = "") {
1453
1454 // Check profiles have the same binning
1455 if ( !((p1 == others) && ...) )
1456 throw BinningError("Requested zipping of profiles with incompatible binning!");
1457
1458 // Construct resulting Scatter whose coordinates
1459 // are given by the unbinned means
1460 constexpr size_t N = sizeof...(Args)+1;
1461 ScatterND<N> rtn;
1462 rtn.setAnnotation("Path", path);
1463 for (const auto& b1 : p1.bins()) {
1464 typename ScatterND<N>::NdVal vals = { b1.mean(DbnN), others.bin(b1.binIndex()).mean(DbnN) ... };
1465 typename ScatterND<N>::NdVal errs = { b1.stdErr(DbnN), others.bin(b1.binIndex()).stdErr(DbnN) ... };
1466 rtn.addPoint(vals, errs);
1467 }
1468 return rtn;
1469 }
1470
1472
1473}
1474
1475#endif
AnalysisObject is the base class for histograms and scatters.
virtual AnalysisObject & operator=(const AnalysisObject &ao) noexcept
Default copy assignment operator.
void setAnnotation(const std::string &name, const T &value)
Add or set an annotation by name (templated for remaining types)
const std::string title() const
Get the AO title.
std::vector< std::string > annotations() const
const std::string path() const
Get the AO path.
void rmAnnotation(const std::string &name)
Delete an annotation by name.
const std::string & annotation(const std::string &name) const
Get an annotation by name (as a string)
virtual AnalysisObject * newclone() const =0
Make a copy on the heap, via 'new'.
bool hasAnnotation(const std::string &name) const
Check if an annotation is defined.
AnalysisObject()
Default constructor.
Discrete axis with edges of non-floating-point-type.
Definition BinnedAxis.h:91
User-facing BinnedDbn class in arbitrary dimension.
Definition BinnedDbn.h:55
typename BaseT::BinT BinType
Definition BinnedDbn.h:60
BinnedDbn< DbnN, AxisT... > HistoT
Definition BinnedDbn.h:57
HistoT * newclone() const noexcept
Make a copy on the heap.
Definition BinnedDbn.h:91
typename BaseT::FillType FillType
Definition BinnedDbn.h:59
BinnedDbn()=default
BinnedDbn(const BaseT &other)
Copy constructor (needed for clone functions).
Definition BinnedDbn.h:76
HistoT clone() const noexcept
Make a copy on the stack.
Definition BinnedDbn.h:86
BinnedDbn(const HistoT &)=default
std::shared_ptr< HistoT > Ptr
Definition BinnedDbn.h:61
BinnedDbn(HistoT &&)=default
BinnedDbn(HistoT &&other, const std::string &path)
Definition BinnedDbn.h:83
BinnedDbn(const HistoT &other, const std::string &path)
Definition BinnedDbn.h:78
BinnedDbn(BaseT &&other)
Move constructor.
Definition BinnedDbn.h:81
BinnedDbn & operator=(const HistoT &)=default
Forward declaration.
BinT & bin(size_t idx) noexcept
Returns reference to the bin at idx.
void maskBins(const std::vector< size_t > &indicesToMask, const bool status=true) noexcept
Mask a range of bins.
size_t numBinsAt(const size_t axisN, const bool includeOverflows=false) const noexcept
Number of bins in the BinnedStorage.
size_t numBins(const bool includeOverflows=false, const bool includeMaskedBins=false) const noexcept
Number of bins in the BinnedStorage.
bool isMasked(const size_t binIndex) const noexcept
BinsVecWrapper< BinsVecT > bins(const bool includeOverflows=false, const bool includeMaskedBins=false) noexcept
Returns bins vector wrapper, which skips masked elements when iterated over.
const BinningT & binning() const noexcept
Returns dimension underlying binning object reference.
std::vector< size_t > maskedBins() const noexcept
Error for general binning problems.
Definition Exceptions.h:27
double RMS(const size_t i) const
Weighted RMS, , of distribution.
Definition Dbn.h:546
double mean(const size_t i) const
Weighted mean, , of distribution.
Definition Dbn.h:519
double variance(const size_t i) const
Weighted variance, , of distribution.
Definition Dbn.h:525
double stdErr(const size_t i) const
Weighted standard error on the mean, , of distribution.
Definition Dbn.h:531
All histograms can be instantiated through this alias.
Definition BinnedDbn.h:121
AnalysisObject * mkInert(const std::string &path="", const std::string &source="") const noexcept
Return an inert version of the analysis object (e.g. scatter, estimate)
Definition BinnedDbn.h:1108
double integralRange(const size_t binIndex1, size_t binIndex2) const
Calculates the integrated volume of the histogram between global bins binindex1 and binIndex2.
Definition BinnedDbn.h:484
double rms(size_t axisN, const bool includeOverflows=true) const noexcept
Calculates the RMS at axis.
Definition BinnedDbn.h:601
std::enable_if_t< std::is_floating_point< E >::value, E > min() const noexcept
Get the lowest non-overflow edge of the axis.
Definition BinnedDbn.h:449
void deserializeContent(const std::vector< double > &data)
Content deserialisation for MPI reduce operations.
Definition BinnedDbn.h:772
DbnStorage(Axis< AxisT > &&... axes, const std::string &path="", const std::string &title="")
Constructor given a sequence of rvalue axes.
Definition BinnedDbn.h:185
double sumWA(const size_t dim, const bool includeOverflows=true) const
Calculates first moment along axis dim in histo.
Definition BinnedDbn.h:543
void reset() noexcept
Reset the histogram.
Definition BinnedDbn.h:411
double sumWA2(const size_t dim, const bool includeOverflows=true) const
Calculates second moment along axis dim in histo.
Definition BinnedDbn.h:552
DbnStorage(std::initializer_list< AxisT > &&... binsEdges, const std::string &path="", const std::string &title="")
Constructor giving explicit bin edges as initializer list.
Definition BinnedDbn.h:165
std::enable_if_t< std::is_floating_point< E >::value, std::vector< E > > widths(const bool includeOverflows=false) const noexcept
Templated version to get bin widths of axis N by reference.
Definition BinnedDbn.h:441
void normalize(const double normto=1.0, const bool includeOverflows=true)
Normalize the (visible) histo "volume" to the normto value.
Definition BinnedDbn.h:260
double stdErr(size_t axisN, const bool includeOverflows=true) const noexcept
Calculates the standard error at axis.
Definition BinnedDbn.h:593
double densitySum(const bool includeOverflows=true) const noexcept
Returns the sum of the bin densities.
Definition BinnedDbn.h:630
double stdDev(size_t axisN, const bool includeOverflows=true) const noexcept
Calculates the standard deviation at axis.
Definition BinnedDbn.h:588
DbnStorage(std::vector< AxisT > &&... binsEdges, const std::string &path="", const std::string &title="")
Constructor giving explicit bin edges as rvalue reference.
Definition BinnedDbn.h:145
double numEntries(const bool includeOverflows=true) const noexcept
Get the number of fills (fractional fills are possible).
Definition BinnedDbn.h:511
double density(const bool includeOverflows=true) const noexcept
Get the total density of the histogram.
Definition BinnedDbn.h:616
auto mkMarginalProfile(const std::string &path="") const
Produce a BinnedProfile from a DbnStorage.
Definition BinnedDbn.h:921
std::enable_if_t< std::is_floating_point< E >::value, E > max() const noexcept
Get the highest non-overflow edge of the axis.
Definition BinnedDbn.h:457
DbnStorage & operator+=(const DbnStorage &dbn)
Add two DbnStorages.
Definition BinnedDbn.h:354
DbnStorage * newclone() const noexcept
Make a copy on the heap.
Definition BinnedDbn.h:220
double effNumEntries(const bool includeOverflows=true) const noexcept
Get the effective number of fills.
Definition BinnedDbn.h:519
double integralError(const bool includeOverflows=true) const noexcept
Get the total volume error of the histogram.
Definition BinnedDbn.h:473
typename BaseT::BinningT BinningT
Definition BinnedDbn.h:125
DbnStorage & operator-=(const DbnStorage &dbn)
Subtract one DbnStorages from another one.
Definition BinnedDbn.h:381
FillableStorage< DbnN, Dbn< DbnN >, AxisT... > BaseT
Definition BinnedDbn.h:124
auto mkHistos(const std::string &path="", const bool includeOverflows=false) const
Split into vector of BinnedHisto along axis axisN.
Definition BinnedDbn.h:1054
auto mkProfiles(const std::string &path="", const bool includeOverflows=false) const
Split into vector of BinnedProfile along axis axisN.
Definition BinnedDbn.h:1031
double densityError(const bool includeOverflows=true) const noexcept
Get the total density error of the histogram.
Definition BinnedDbn.h:623
double crossTerm(const size_t A1, const size_t A2, const bool includeOverflows=true) const
Calculates cross-term along axes A1 and A2 in histo.
Definition BinnedDbn.h:562
auto mkMarginalHisto(const std::string &path="") const
Produce a BinnedHisto from a DbnStorage.
Definition BinnedDbn.h:975
DbnStorage(const DbnStorage &other, const std::string &path="")
Copy constructor.
Definition BinnedDbn.h:205
double dVol(const bool includeOverflows=true) const noexcept
Definition BinnedDbn.h:608
size_t fillDim() const noexcept
Fill-dimension of this data object.
Definition BinnedDbn.h:419
void rebin(unsigned int n, size_t begin=1, size_t end=UINT_MAX)
Overloaded alias for rebinBy.
Definition BinnedDbn.h:292
DbnStorage(const Axis< AxisT > &... axes, const std::string &path="", const std::string &title="")
Constructor given a sequence of axes.
Definition BinnedDbn.h:181
size_t lengthContent(bool=false) const noexcept
Length of serialized content vector for MPI reduce operations.
Definition BinnedDbn.h:755
double sumW(const bool includeOverflows=true) const noexcept
Calculates sum of weights in histo.
Definition BinnedDbn.h:527
double sumW2(const bool includeOverflows=true) const noexcept
Calculates sum of squared weights in histo.
Definition BinnedDbn.h:535
DbnStorage(const std::vector< size_t > &nBins, const std::vector< std::pair< EdgeT, EdgeT > > &limitsLowUp, const std::string &path="", const std::string &title="")
Constructor giving range and number of bins.
Definition BinnedDbn.h:175
BinnedEstimate< AxisT... > mkEstimate(const std::string &path="", const std::string &source="", const bool divbyvol=true, const double overflowsWidth=-1.0) const
Produce a BinnedEstimate from a DbnStorage.
Definition BinnedDbn.h:800
double variance(size_t axisN, const bool includeOverflows=true) const noexcept
Calculates the variance at axis.
Definition BinnedDbn.h:580
void scaleW(const double scalefactor) noexcept
Rescale as if all fill weights had been different by factor scalefactor.
Definition BinnedDbn.h:239
DbnStorage(BinningT &&binning, const std::string &path="", const std::string &title="")
Constructor given an rvalue BinningT.
Definition BinnedDbn.h:193
typename BaseT::BinT BinType
Definition BinnedDbn.h:127
DbnStorage clone() const noexcept
Make a copy on the stack.
Definition BinnedDbn.h:215
auto mkEstimates(const std::string &path="", const std::string source="", const bool divbyvol=true, const bool includeOverflows=false, const double overflowsWidth=-1.0)
Produce a BinnedEstimate for each bin along axis axisN and return as a vector.
Definition BinnedDbn.h:849
virtual int fill(FillType &&coords, const double weight=1.0, const double fraction=1.0)
Triggers fill adapter on the bin corresponding to coords.
Definition BinnedDbn.h:234
DbnStorage(const std::vector< AxisT > &... binsEdges, const std::string &path="", const std::string &title="")
Constructor giving explicit bin edges as lvalue const reference.
Definition BinnedDbn.h:155
typename BaseT::FillType FillType
Definition BinnedDbn.h:128
double integralTo(const size_t binIndex) const noexcept
Get the total volume of the histogram.
Definition BinnedDbn.h:478
double integral(const bool includeOverflows=true) const noexcept
Get the total volume of the histogram.
Definition BinnedDbn.h:468
void rebinBy(unsigned int n, size_t begin=1, size_t end=UINT_MAX)
Merge every group of n bins, from start to end inclusive.
Definition BinnedDbn.h:276
DbnStorage(const BinningT &binning, const std::string &path="", const std::string &title="")
Constructor given a BinningT (needed for type reductions)
Definition BinnedDbn.h:189
BinnedHisto< AxisT... > mkHisto(const std::string &path="") const
Produce a BinnedHisto from BinnedProfile.
Definition BinnedDbn.h:893
double mean(size_t axisN, const bool includeOverflows=true) const noexcept
Calculates the mean value at axis.
Definition BinnedDbn.h:572
BinnedEstimate< AxisT... > mkBinnedEffNumEntries(const std::string &path="", const std::string &source="", const bool includeOverflows=true, const bool divbyvol=true, const double overflowsWidth=-1.0)
Convert the BinnedDbn to a BinnedEstimate representing the effective number of entries in each bin.
Definition BinnedDbn.h:1085
DbnStorage(const ScatterND< sizeof...(AxisT)+1 > &s, const std::string &path="", const std::string &title="")
Constructor given a scatter.
Definition BinnedDbn.h:198
std::vector< E > edges(const bool includeOverflows=false) const noexcept
Returns the edges of axis N by value.
Definition BinnedDbn.h:429
double integralRangeError(const size_t binIndex1, size_t binIndex2) const
Calculates the integrated volume error of the histogram between global bins binindex1 and binIndex2.
Definition BinnedDbn.h:498
std::vector< double > serializeContent(bool=false) const noexcept
Content serialisation for MPI reduce operations.
Definition BinnedDbn.h:759
void scale(const size_t i, const double scalefactor) noexcept
Rescale as if all fill weights had been different by factor scalefactor along dimension i.
Definition BinnedDbn.h:247
DbnStorage()
Nullary constructor for unique pointers etc.
Definition BinnedDbn.h:138
double maxDensity(const bool includeOverflows=true) const noexcept
Returns the largest density in any of the bins.
Definition BinnedDbn.h:638
void rebin(const std::vector< typename BinningT::template getAxisT< axisN >::EdgeT > &newedges)
Overloaded alias for rebinTo.
Definition BinnedDbn.h:325
void rebinTo(const std::vector< typename BinningT::template getAxisT< axisN >::EdgeT > &newedges)
Rebin to the given list of bin edges.
Definition BinnedDbn.h:298
size_t dim() const noexcept
Total dimension of the object (number of axes + filled value)
Definition BinnedDbn.h:422
DbnStorage & operator=(const DbnStorage &dbn) noexcept
Copy assignment.
Definition BinnedDbn.h:330
auto mkScatter(const std::string &path="", const bool divbyvol=true, const bool usefocus=false, const bool includeOverflows=false, const bool includeMaskedBins=false, const double overflowsWidth=-1.0) const
Produce a ScatterND from a DbnStorage.
Definition BinnedDbn.h:862
DbnStorage(DbnStorage &&other, const std::string &path="")
Move constructor.
Definition BinnedDbn.h:211
User-facing Dbn class inheriting from DbnBase.
Definition Dbn.h:637
FillCoordsT FillType
Type of the fill coordinates.
size_t fillDim() const
Returns the dimension of the filling tuple.
int fill(FillCoordsT &&coords, std::index_sequence< Is... >, const double weight=1.0, const double fraction=1.0) noexcept
Triggers fill adapter on the bin corresponding to coords.
FillableStorage & operator=(const FillableStorage &other) noexcept
Copy assignment.
Bin< sizeof...(AxisT), Dbn< DbnN >, BinningT > BinT
A base class for all fillable objects.
Definition Fillable.h:15
Error for e.g. use of invalid bin ranges.
Definition Exceptions.h:34
A generic data type which is just a collection of n-dim data points with errors.
Definition Scatter.h:153
PointND< N > & point(size_t index)
Get a reference to the point with index index.
Definition Scatter.h:361
ScatterND< N > & addPoint(const PointND< N > &pt)
Insert a new point.
Definition Scatter.h:378
Utils::ndarray< double, N > NdVal
Definition Scatter.h:190
Error for problems introduced outside YODA, to put it nicely.
Definition Exceptions.h:86
Errors relating to event/bin weights.
Definition Exceptions.h:51
constexpr void staticFor(Func &&f)
Used to apply functor on tuple. Calls lambda with integral constant, which can be used to query tuple...
Definition MetaUtils.h:35
Anonymous namespace to limit visibility.
std::string mkTypeString()
Helper function to construct the BinnedDbn and BinnedEstimate type names.
double stdErr(const double sumWX, const double sumW, const double sumWX2, const double sumW2)
Calculate the weighted standard error of a sample.
Definition MathUtils.h:476
std::enable_if_t< all_CAxes< EdgeT... >::value > enable_if_all_CAxisT
Checks if all edge types are continuous.
BinnedEstimate< AxisT... > mkIntegralEff(const BinnedDbn< DbnN, AxisT... > &histo, const bool includeOverflows=true)
Convert a BinnedDbn to a BinnedEstimate where each bin is a fraction of the total.
Definition BinnedDbn.h:1322
std::string mkAxisConfig()
Helper function to construct the axis config.
BinnedDbn< DbnN, AxisT... > operator+(BinnedDbn< DbnN, AxisT... > first, BinnedDbn< DbnN, AxisT... > &&second)
Add two BinnedDbn objects.
Definition BinnedDbn.h:1142
BinnedEstimate< AxisT... > operator/(const BinnedDbn< DbnN, AxisT... > &numer, const BinnedDbn< DbnN, AxisT... > &denom)
Definition BinnedDbn.h:1215
BinnedEstimate< AxisT... > mkIntegral(const BinnedDbn< DbnN, AxisT... > &histo, const bool includeOverflows=true)
Convert a BinnedDbn to a BinnedEstimate representing the integral of the histogram.
Definition BinnedDbn.h:1293
NUM sqr(NUM a)
Named number-type squaring operation.
Definition MathUtils.h:216
BinnedEstimate< AxisT... > efficiency(const BinnedDbn< DbnN, AxisT... > &accepted, const BinnedDbn< DbnN, AxisT... > &total)
Calculate a binned efficiency ratio of two BinnedDbn objects.
Definition BinnedDbn.h:1244
ScatterND< sizeof...(Args)+1 > zipProfiles(const BinnedDbn< DbnN, AxisT... > &p1, Args &&... others, const std::string &path="")
Zip profile objects of the same type into a combined scatter object.
Definition BinnedDbn.h:1451
BinnedEstimate< AxisT... > asymm(const BinnedDbn< DbnN, AxisT... > &a, const BinnedDbn< DbnN, AxisT... > &b)
Calculate the asymmetry (a-b)/(a+b) of two BinnedDbn objects.
Definition BinnedDbn.h:1278
BinnedEstimate< AxisT... > add(const BinnedDbn< DbnN, AxisT... > &dbn, const BinnedEstimate< AxisT... > &est)
Calculate the addition of a BinnedDbn with a BinnedEstimate.
Definition BinnedDbn.h:1347
BinnedEstimate< AxisT... > subtract(const BinnedDbn< DbnN, AxisT... > &dbn, const BinnedEstimate< AxisT... > &est)
Calculate the subtraction of a BinnedEstimate from a BinnedDbn.
Definition BinnedDbn.h:1379
BinnedDbn< DbnN, AxisT... > operator-(BinnedDbn< DbnN, AxisT... > first, BinnedDbn< DbnN, AxisT... > &&second)
Subtract one BinnedDbn object from another.
Definition BinnedDbn.h:1158
BinnedEstimate< AxisT... > divide(const BinnedDbn< DbnN, AxisT... > &numer, const BinnedDbn< DbnN, AxisT... > &denom)
Divide two BinnedDbn objects.
Definition BinnedDbn.h:1174
std::enable_if_t< std::is_floating_point_v< NUM >, bool > isZero(NUM val, double tolerance=1e-5)
Compare a number to zero.
Definition MathUtils.h:63
double mean(const std::vector< int > &sample)
Calculate the mean of a sample.
Definition MathUtils.h:397
static const char * name()